【題目】如圖所示是鼎龍高速路口開往寧都方向的某汽車行駛的路程skm)與時(shí)間t(分鐘)的函數(shù)關(guān)系圖,觀察圖中所提供的信息,解答下列問題:

1)汽車在前6分鐘內(nèi)的平均速度是   千米/小時(shí),汽車在興國服務(wù)區(qū)停了多長時(shí)間?   分鐘;

2)當(dāng)10≤t≤20時(shí),求St的函數(shù)關(guān)系式;

3)規(guī)定:高速公路時(shí)速超過120千米/小時(shí)為超速行駛,試判斷當(dāng)10≤t≤20時(shí),該汽車是否超速,說明理由.

【答案】190,4;(2S=1.8t﹣9;(3當(dāng)10≤t≤20時(shí),該汽車沒有超速.

【解析】【試題分析】

1)由圖像可知,前6分鐘行駛了9km,則速度為 (千米/小時(shí));汽車在興國服務(wù)區(qū)停留的時(shí)間為:106=4(分鐘).

(2)利用待定系數(shù)法來求解析式,設(shè)St的函數(shù)關(guān)系式為S=kt+b

點(diǎn)(10,9),(2027)在該函數(shù)圖象上,列出二元方程組,得

,解得:

當(dāng)10≤t≤20時(shí),St的函數(shù)關(guān)系式為S=1.8t﹣9

3)求出汽車在這段時(shí)間內(nèi)的速度,與120進(jìn)行比較得知.當(dāng)10≤t≤20時(shí),該汽車的速度為:(27﹣9÷20﹣10×60=108(千米/小時(shí)),108120所以當(dāng)10≤t≤20時(shí),該汽車沒有超速.

【試題解析】

16分鐘=小時(shí),

汽車在前6分鐘內(nèi)的平均速度為:=90(千米/小時(shí));

汽車在興國服務(wù)區(qū)停留的時(shí)間為:10﹣6=4(分鐘).

故答案為:90;4

2)設(shè)St的函數(shù)關(guān)系式為S=kt+b,

點(diǎn)(10,9),(20,27)在該函數(shù)圖象上,

,解得:,

當(dāng)10≤t≤20時(shí),St的函數(shù)關(guān)系式為S=1.8t﹣9

3)當(dāng)10≤t≤20時(shí),該汽車的速度為:(27﹣9÷20﹣10×60=108(千米/小時(shí)),

∵108120,

當(dāng)10≤t≤20時(shí),該汽車沒有超速.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在邊長為a的正方形中減去一個(gè)邊長為b的小正方形(ab),把剩下的部分拼成一個(gè)梯形如圖,分別計(jì)算這兩個(gè)圖陰影部分的面積,驗(yàn)證了公式:_____用此公式計(jì)算:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB10AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD-CD=8-2=6,

BC的長為6或10.

型】填空
結(jié)束】
12

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=ax+b(a、b是常數(shù),a≠0)函數(shù)圖象經(jīng)過(﹣1,4),(2,﹣2)兩點(diǎn),下面說法中:(1)a=2,b=2;(2)函數(shù)圖象經(jīng)過(1,0);(3)不等式ax+b>0的解集是x<1;(4)不等式ax+b<0的解集是x<1;正確的說法有____________________.(請寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)四邊形的一條對角線把四邊形分成兩個(gè)等腰三角形,且其中一個(gè)等腰三角形的底角是另一個(gè)等腰三角形底角的2倍,我們把這條對角線叫做這個(gè)四邊形的黃金線,這個(gè)四邊形叫做黃金四邊形.

(1)如圖1,在四邊形ABCD中,AB=AD=DC,對角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個(gè)內(nèi)角的度數(shù);

(2)如圖2,點(diǎn)B是弧AC的中點(diǎn),請?jiān)凇袿上找出所有的點(diǎn)D,使四邊形ABCD的對角線AC是黃金線(要求:保留作圖痕跡);

(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索新知)

如圖1,點(diǎn)C在線段AB上,圖中共有3條線段:AB、ACBC,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點(diǎn)C是線段AB的“二倍點(diǎn)”.

(1)一條線段的中點(diǎn)   這條線段的“二倍點(diǎn)”;(填“是”或“不是”)

(深入研究)

如圖2,若線段AB=20cm,點(diǎn)M從點(diǎn)B的位置開始,以每秒2cm的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒.

(2)問t為何值時(shí),點(diǎn)M是線段AB的“二倍點(diǎn)”;

(3)同時(shí)點(diǎn)N從點(diǎn)A的位置開始,以每秒1cm的速度向點(diǎn)B運(yùn)動(dòng),并與點(diǎn)M同時(shí)停止.請直接寫出點(diǎn)M是線段AN的“二倍點(diǎn)”時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高足球基本功,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個(gè)人腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳球給其余兩人的機(jī)會是均等的,由甲開始傳球,共傳三次.

(1)請用樹狀圖列舉出三次傳球的所有可能情況;

(2)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對移動(dòng)電話采取不同的收費(fèi)方式,其中,所使用的便民卡如意卡在某市范圍內(nèi)每月(30天)的通話時(shí)間x(min)與通話費(fèi)y(元)的關(guān)系如圖所示:

(1)分別求出通話費(fèi)y1,y2與通話時(shí)間x之間的函數(shù)關(guān)系式;

(2)請幫用戶計(jì)算,在一個(gè)月內(nèi)使用哪一種卡便宜.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的推理.

已知:如圖,ABCDGH,EG平分∠BEF,FG平分∠EFD.

試說明:EGF=90°.

:因?yàn)?/span>HGAB(已知),

所以∠1=3(  ).

又因?yàn)?/span>HGCD(已知),

所以∠2=4(  ).

因?yàn)?/span>ABCD(已知),

所以∠BEF+  =180°(  ).

又因?yàn)?/span>EG平分∠BEF(已知),

所以∠1=  (  ).

又因?yàn)?/span>FG平分∠EFD(已知),

所以∠2=  (  ),

所以∠1+2=(  +  ).

所以∠1+2=90°.

所以∠3+4=90°(  ),即∠EGF=90°.

查看答案和解析>>

同步練習(xí)冊答案