【題目】已知△ABC中,∠BAC=90°,用尺規(guī)過點(diǎn)A作一條直線,使其將△ABC分成兩個(gè)相似的三角形,其作法不正確的是( )
A. B.
C. D.
【答案】D
【解析】根據(jù)過直線外一點(diǎn)作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;即可作出判斷.
A、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點(diǎn)D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進(jìn)而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;A不符合題意;
B、以點(diǎn)A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點(diǎn),再分別以這兩點(diǎn)為圓心,大于兩交點(diǎn)間的距離為半徑畫弧,兩弧相交于一點(diǎn),過這一點(diǎn)與A點(diǎn)作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形是彼此相似的;B不符合題意;
C、以AB為直徑作圓,該圓交BC于點(diǎn)D,根據(jù)圓周角定理,過AD兩點(diǎn)作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;C不符合題意;
D、以點(diǎn)B為圓心BA的長為半徑畫弧,交BC于點(diǎn)E,再以E點(diǎn)為圓心,AB的長為半徑畫弧,在BC的另一側(cè)交前弧于一點(diǎn),過這一點(diǎn)及A點(diǎn)作直線,該直線不一定是BE的垂線;從而就不能保證兩個(gè)小三角形相似;D符合題意;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸,y軸的交點(diǎn)為A,B兩點(diǎn),點(diǎn)A,B的縱坐標(biāo)、橫坐標(biāo)如圖所示.
(1)求直線AB的表達(dá)式及△AOB的面積S△AOB.
(2)在x軸上是否存在一點(diǎn),使S△PAB=3?若存在,求出P點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)與軸、軸分別交于點(diǎn)、兩點(diǎn),與正比例函數(shù)交于點(diǎn).
(1)求一次函數(shù)和正比例函數(shù)的表達(dá)式;
(2)若點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),點(diǎn)在一次函數(shù)的圖象上,軸,當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知,平分外角,平分外角.直接寫出和的數(shù)量關(guān)系,不必證明;
(2)如圖2,已知,和三等分外角,和三等分外角.試確定和的數(shù)量關(guān)系,并證明你的猜想;(不寫證明依據(jù))
(3)如圖3,已知,、和四等分外角,、和四等分外角.試確定和的數(shù)量關(guān)系,并證明你的猜想;(不寫證明依據(jù))
(4)如圖4,已知,將外角進(jìn)行分,是臨近邊的等分線,將外角進(jìn)行等分,是臨近邊的等分線,請直接寫出和的數(shù)量關(guān)系,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點(diǎn)O,連接BO.若∠DAC=26°,則∠OBC的度數(shù)為( )
A. 54°B. 64°C. 74°D. 26°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點(diǎn)D是邊BC上(不與B,C重合)一動(dòng)點(diǎn),∠ADE=∠B=a,DE交AC于點(diǎn)E,下列結(jié)論:①AD2=AE.AB;②1.8≤AE<5;⑤當(dāng)AD=時(shí),△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點(diǎn)C,與OB交于點(diǎn)D,且與BO的延長線交于點(diǎn)E,連接EC,CD.
(1)試判斷AB與⊙O的位置關(guān)系,并加以證明;
(2)若tanE=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E、F分別在邊AB、DC上,下列條件不能使四邊形EBFD是平行四邊形的條件是( )
A.DE=BFB.AE=CFC.DE∥FBD.∠ADE=∠CBF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,分別以點(diǎn)為圓心,大于的長為半徑作弧,兩弧交于點(diǎn),作射線交于點(diǎn),交于點(diǎn).若點(diǎn)是的中點(diǎn).
(1)求證:;
(2)求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com