【題目】閱讀下列材料: 1×2= (1×2×3-0×1×2),2×3= (2×3×4-1×2×3),3×4= (3×4×5- 2×3×4),
由以上三個等式左、右兩邊分別相加,可得:
1×2+2×3+3×4=×3×4×5=20
讀完以上材料,請你計算下列各題(寫出過程):
(1)1×2+2×3+3×4+…+10×11= ;
(2)1×2+2×3+3×4+…+n×(n+1)= .
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,以矩形的頂點為原點,所在直線為軸,所在直線為軸,建立平面直角坐標系,頂點為點的拋物線經(jīng)過點,點.
(1)寫出拋物線的對稱軸及點的坐標,
(2)將矩形繞點順時針旋轉(zhuǎn)得到矩形.
①當點恰好落在的延長線上時,如圖2,求點的坐標.
②在旋轉(zhuǎn)過程中,直線與直線分別與拋物線的對稱軸相交于點,點.若,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A,B在數(shù)軸上表示的數(shù)如圖所示. 動點P從點A出發(fā),沿數(shù)軸向右以每秒2個單位長度的速度運動到點B,再從點B以同樣的速度運動到點A停止,設點P運動的時間為t秒,解答下列問題.
(1)當t=2時,AP= 個單位長度,當t=6時,AP= 個單位長度;
(2)直接寫出整個運動過程中AP的長度(用含t的代數(shù)式表示);
(3)當AP=6個單位長度時,求t的值;
(4)當點P運動到線段AB的3等分點時,t的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,且AC平分∠DAB
(1)求證:四邊形ABCD是菱形
(2)若AC=16,BD=12,試求點O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“你最喜歡哪種學習方式”隨機調(diào)查了他們周圍的一些同學,根據(jù)收集到的數(shù)據(jù)繪制了以下兩個不完整的統(tǒng)計圖(如圖).
請根據(jù)上面兩個不完整的統(tǒng)計圖回答以下4個問題:
(1)這次抽樣調(diào)查中,共調(diào)查了_____名學生.
(2)補全條形統(tǒng)計圖中的缺項.
(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學習的占_____%.
(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學生中大約有_____人選擇小組合作學習模式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com