【題目】下列結(jié)論正確的個數(shù)是( )
(1)一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形是六邊形;
(2)如果一個三角形的三邊長分別為6、8、10,則最長邊上的中線長為5;
(3)若△ABC∽△DEF,相似比為1:4,則S△ABC:S△DEF=1:4;
(4)若等腰三角形一個角為80°,則底角為80°或50°.
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
由多邊形內(nèi)角和定理和外角和公式即可判斷(1);由三角形的三邊長分別為6、8、10可知該三角形為直角三角形,據(jù)此可判斷(2);相似三角形的面積比等于相似比的平方,據(jù)此可判斷(3);等腰三角形一個角為80°,該角可能是頂角或底角,據(jù)此可判斷(4).
解:(1)多邊形的外角和為180°,則其內(nèi)角和為540°=(n-2)×180°,則n=5,該多邊形為五邊形,故錯誤;
(2)由題可知該三角形為直角三角形,根據(jù)直角三角形斜邊上的中線等于斜邊長度的一半可知,最長邊上的中線長為5,故正確;
(3)由相似三角形的性質(zhì)可知S△ABC:S△DEF=1:16,故錯誤;
(4) 等腰三角形一個角為80°,當(dāng)該角為頂角時,底角為;當(dāng)該角為底角時,兩底角均為80°,故正確;
正確的是(2)(4),故選擇B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的周長為17,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為點N,∠ACB的平分線垂直于AD,垂足為點M,若BC=6,則MN的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件不能判定四邊形ABCD是矩形的是( 。
A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥AD
C.AO=BO,CO=DOD.AO=BO=CO=DO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.
(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;
(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結(jié)論是否仍然成立?請證明你的結(jié)論;
(3)將圖1中的正方形CEFG繞點C旋轉(zhuǎn),使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖點A(1,1),B(2,﹣3),點P為x軸上一點,當(dāng)|PA﹣PB|最大時,點P的坐標(biāo)為( )
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個木箱中裝有卡片共50張,這些卡片共有三種,它們分別標(biāo)有1、2、3的字樣,除此之外其他都相同,其中標(biāo)有數(shù)字2卡片的張數(shù)是標(biāo)有數(shù)字3卡片的張數(shù)的3倍少8張.已知從箱子中隨機摸出一張標(biāo)有數(shù)字1卡片的概率是.
(1)求木箱中裝有標(biāo)1的卡片張數(shù);
(2)求從箱子中隨機摸出一張標(biāo)有數(shù)字3的卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)采用隨機的方式對學(xué)生掌握安全知識的情況進行測評,并按成績高低分成優(yōu)、良、中、差四個等級進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據(jù)有關(guān)信息解答:
(1)接受測評的學(xué)生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應(yīng)扇形的圓心角為________°,并補全條形統(tǒng)計圖;
(2)若該校共有學(xué)生1200人,請估計該校對安全知識達到“良”程度的人數(shù);
(3)測評成績前五名的學(xué)生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com