【題目】2019612日,重慶直達香港高鐵的車票正式開售據(jù)悉,重慶直達香港的這趟G319/320次高鐵預計在7月份開行,全程1342公里只需7個半小時該車次沿途?空军c包括遵義、貴陽東、桂林西、肇慶東、廣州南和深圳北重慶直達香港高鐵開通將為重慶旅游業(yè)發(fā)展增添生機與活力,預計重慶旅游經(jīng)濟將創(chuàng)新高在此之前技術部門做了大量測試,在一次測試中一高鐵列車從地出發(fā)勻速駛向地,到達地停止;同時一普快列車從地出發(fā),勻速駛向地,到達地停止且,兩地之間有一地,其中,如圖①兩列車與地的距離之和(千米)與普快列車行駛時間(小時)之間的關系如圖②所示則高鐵列車到達地時,普快列車離地的距離為__________千米.

【答案】360

【解析】

由圖象可知4.5小時兩列車與C地的距離之和為0,于是高鐵列車和普快列車在C站相遇,由于AC=2BC,因此高鐵列車的速度是普快列車的2倍,相遇后圖象的第一個轉(zhuǎn)折點,說明高鐵列車到達B站,此時兩車距C站的距離之和為360千米,由于V高鐵=2V普快,因此BC距離為360千米的三分之二,即240千米,普快離開C占的距離為360千米的三分之一,即120千米,于是可以得到全程為240+240×2=720千米,當高鐵列車到達B站時,普快列車離開B240+120=360千米,此時距A站的距離為720-360=360千米.

∵圖象過(4.5,0
∴高鐵列車和普快列車在C站相遇
AC=2BC,
V高鐵=2V普快,
BC之間的距離為:360×=240千米,全程為AB=240+240×2=720千米,
此時普快離開C360×=120千米,
當高鐵列車到達B站時,普快列車距A站的距離為:720-120-240=360千米,
故答案為:360

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上,

(1)B點關于y軸的對稱點坐標為   ;

(2)將△AOB向左平移3個單位長度得到△A1O1B1,請畫出△A1O1B1;

(3)以原點O為對稱中心,畫出△ AOB與關于原點對稱的△ A2 O B2

(4)以原點O為旋轉(zhuǎn)中心,畫出把△AOB順時針旋轉(zhuǎn)90°的圖形△A3 O B3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.

1)若花園的面積為192m2, x的值;

2)若在P處有一棵樹與墻CDAD的距離分別是15m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y=的圖象上有一點P(m,n),其中坐標是關于t的一元二次方程t2﹣3t+k=0的兩根,且P點到原點的距離為,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在反比例函數(shù)的圖象上分別有一點,,連接軸于點,若,則__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=8厘米,AC=16厘米,點PA出發(fā),以每秒2厘米的速度向B運動,點QC同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,設運動的時間為t

⑴用含t的代數(shù)式表示:AP=   ,AQ=   

⑵當以A,P,Q為頂點的三角形與ABC相似時,求運動時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為綠化校園,某校計劃購進A、B兩種樹苗,共21課.已知A種樹苗每棵90元,B種樹苗每棵70元.設購買B種樹苗x棵,購買兩種樹苗所需費用為y元.

1)求yx的函數(shù)表達式;

2)若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線的解析式為,點的坐標分別為(1,0)(0,2),直線與直線相交于點

(1)求直線的解析式;

(2)在第一象限的直線上,連接,且,求點的坐標.

查看答案和解析>>

同步練習冊答案