【題目】在一個(gè)裝有2個(gè)紅球和3個(gè)白球(每個(gè)球除顏色外完全相同)的盒子中任意摸出一個(gè)球,摸到紅球小明獲勝,摸到白球小剛獲勝,這個(gè)游戲?qū)﹄p方公平嗎?為什么?如何修改可以讓游戲公平?

【答案】不公平;理由看詳解;取出一個(gè)白球,使紅球和白球的個(gè)數(shù)相等,這樣游戲公平.

【解析】

根據(jù)紅球和白球的個(gè)數(shù),以及總個(gè)數(shù),求出P(小明獲勝)P(小剛獲勝),比較大小所以游戲即可。再根據(jù)取出一個(gè)白球,使紅球和白球的個(gè)數(shù)相等,P(小明獲勝)=;P(小剛獲勝)=,獲勝的概率相等,游戲公平.

因?yàn)楣?/span>5個(gè)球,紅球2個(gè),白球3個(gè),所以P(小明獲勝)=;P(小剛獲勝)=,<,所以游戲不公平。取出一個(gè)白球,使紅球和白球的個(gè)數(shù)相等,P(小明獲勝)=P(小剛獲勝)=,獲勝的概率相等,游戲公平.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊ABCAB上的一點(diǎn),且ADDB12,現(xiàn)將ABC折疊,使點(diǎn)CD重合,折痕為EF,點(diǎn)E、F分別在ACBC上,則CECF的值為(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,DBC邊的中點(diǎn),點(diǎn)E與點(diǎn)D關(guān)于AB對(duì)稱,連接AE、BE,分別延長AE、CB交于點(diǎn)F,若∠F48°,則∠C的度數(shù)是( 。

A. 21°B. 52°C. 69°D. 74°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中l1,l,2表示兩人離A地的距離sm)與時(shí)間th)的關(guān)系,請(qǐng)結(jié)合圖象解答下列問題:

1)表示甲離A地的距離與時(shí)間關(guān)系的圖象是   (填l1l2);甲的速度是   km/h);乙的速度是   km/h);

2)甲出發(fā)多長時(shí)間后兩人相遇?(利用方程解決)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】122223+…+22019的值,可令S122223+…+22019,則2S22223+…+2201922020因此2SS220201.仿照以上推理,計(jì)算出155253+…+52019的值為( )

A. 520191B. 520201C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx﹣2)(0≤x2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,得到Cn,若點(diǎn)P(2017,m)在拋物線Cn上,則m( )

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,連接線段與線段交于點(diǎn)M,連接

1)如圖1,求證:;

2)如圖1,求證:OM平分;

3)如圖2,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),在ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度數(shù).

2)圖(1)所示的圖形中,有點(diǎn)像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,觀察規(guī)形圖圖(2),試探究∠BDC與∠A、∠B、∠C之間的數(shù)量關(guān)系,并說明理由.

3)請(qǐng)你直接利用以上結(jié)論,解決以下問題:

①如圖(3),把一塊三角尺XYZ放置在ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=42°,則∠ABX+ACX= °

②如圖(4),DC平分∠ADB,EC平分∠AEB,若∠DAE=60°,∠DBE=140°,求∠DCE的度數(shù).

③如圖(5),∠ABD,∠ACD10等分線相交于點(diǎn)G1、G2G9,若∠BDC=140°,∠BG1C=68°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,點(diǎn)E是邊BC的中點(diǎn),AFED,AEDF

1)求證:四邊形AEDF為菱形;

2)試探究:當(dāng)ABBC  ,菱形AEDF為正方形?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案