【題目】如圖,直線x=t(t>0)與雙曲線y=(k1>0)交于點A,與雙曲線y=(k2<0)交于點B,連接OA,OB.
(1)當k1、k2分別為某一確定值時,隨t值的增大,△AOB的面積_______(填增大、不變、或減小)
(2)當k1+k2=0,S△AOB=8時,求k1、k2的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是O的直徑,AB=4,C為的三等分點(更靠近A點),點P是O上一個動點,取弦AP的中點D,則線段CD的最大值為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相交于A(3,0)、B(1,0)兩點,與y軸相交于點C(0,3),點C.D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B,D.
(1)D點坐標;
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電器專營店的經(jīng)營利潤受地理位置、顧客消費能力等因素的影響,某品牌電腦專營店設(shè)有甲、乙兩家分店,均銷售A、B、C、D四種款式的電腦,每種款式電腦的利潤如表1所示.現(xiàn)從甲、乙兩店每月售出的電腦中各隨機抽取所記錄的50臺電腦的款式,統(tǒng)計各種款式電腦的銷售數(shù)量,如表2所示.
表1:四種款式電腦的利潤
電腦款式 | A | B | C | D |
利潤(元/臺) | 160 | 200 | 240 | 320 |
表2:甲、乙兩店電腦銷售情況
電腦款式 | A | B | C | D |
甲店銷售數(shù)量(臺) | 20 | 15 | 10 | 5 |
乙店銷售數(shù)量(臺)8 | 8 | 10 | 14 | 18 |
試運用統(tǒng)計與概率知識,解決下列問題:
(1)從甲店每月售出的電腦中隨機抽取一臺,其利潤不少于240元的概率為 ;
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),甲、乙兩店每月電腦的總銷量相當.現(xiàn)由于資金限制,需對其中一家分店作出暫停營業(yè)的決定,若從每臺電腦的平均利潤的角度考慮,你認為應對哪家分店作出暫停營業(yè)的決定?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,當α=0°時,正方形ABCD與正方形AEFG互相重合,現(xiàn)將正方形AEFG繞點A逆時針旋轉(zhuǎn),當α=_____時(0°<α<360°),正方形AEFG的頂點F會落在正方形ABCD的兩對角線AC或BD所在直線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線y=mx分別與雙曲線y=,y=(x>0)交于P,Q兩點,且OP=2OQ.
(1)求k的值;
(2)如圖2,若A是雙曲線y=上的動點,AB∥x軸,AC∥y軸,分別交雙曲線y=(x>0)于B,C兩點,連接BC,設(shè)A點的橫坐標為t.
①分別寫出A,B,C的坐標,并求△ABC的面積;
②當m=2時,D為直線y=2x上的一點,若以A,B,C,D為頂點的四邊形是平行四邊形,求A點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,△ABC中,∠ACB=90°,AC=4,BC=6,點E,F分別在邊AB,BC上,將△ABC沿直線EF折疊,點B恰好落在AC邊上的點D處,且CD=3.
(1)求CF的長;
(2)點G是射線BA上的一個動點,連接DG,GC,BD,△DGC的面積與△DGB的面積相等,
①當點G在線段BA上時,求BG的長;
②當點G在線段BA的延長線上時,BG=______;
(3)將直線EF平移,平移后的直線與直線BC,直線AC分別交于點M和點N,以線段MN為一邊作正方形MNPQ,點P與點B在直線MN兩側(cè),連接PD,當PD∥BC時,請直接寫出tan∠QBC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學在利用描點法畫二次函數(shù)y=ax2+bx+c(a=0)的圖象時,先取自變量x的一些值,計算出相應的函數(shù)值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接著,他在描點時發(fā)現(xiàn),表格中有一組數(shù)據(jù)計算錯誤,他計算錯誤的一組數(shù)據(jù)是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com