【題目】如圖,以AB為直徑,點(diǎn)O為圓心的半圓上有一點(diǎn)C,且∠ABC60°,點(diǎn)DAO上一點(diǎn).將DBC沿直線DC對(duì)折得到DB'C,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B,且B'C與半圓相切于點(diǎn)C,連接BO交半圓于點(diǎn)E

1)求證:B'DAB;

2)當(dāng)AB2時(shí),求圖中陰影部分面積.

【答案】(1)見解析;(2)

【解析】

1)連接OC,根據(jù)切線的性質(zhì)得到∠B'CO90,根據(jù)等邊三角形的性質(zhì)、翻轉(zhuǎn)變換的性質(zhì)計(jì)算,得到∠BDB90°,證明結(jié)論;

2)求出∠BOC45°,根據(jù)三角形的面積公式、扇形面積公式計(jì)算即可.

1)證明:連接OC,

B'C與半圓相切于點(diǎn)C,

∴∠B'CO90,

OCOB,∠ABC60°,

∴△OBC是等邊三角形,

∴∠OCB60°,∠B'CB=∠B'CO+OCB90°+60°150°

∵△DBC沿直線DC對(duì)折得到DB'C,

∴∠DCBBCB×150°75°,

DBC中,∠CDB180°﹣∠ABC﹣∠DCB180°75°60°45°

∴∠BDB2CDB2×45°90°

BDAB;

2)解:∵AB2OBC是等邊三角形,

OCOBBCB'C1

∵∠B'CO90°,

∴∠BOC45°

∴陰影部分的面積=SBOCS扇形EOCBCCO×1×1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展以素質(zhì)提升為主題的研學(xué)活動(dòng),推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競(jìng)技;C.家鄉(xiāng)導(dǎo)游;D.植物識(shí)別.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目.八年級(jí)(3)班班主任劉老師對(duì)全班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問題:

(1)八年級(jí)(3)班學(xué)生總?cè)藬?shù)是   ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)劉老師發(fā)現(xiàn)報(bào)名參加植物識(shí)別的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這些學(xué)生中任意挑選兩名擔(dān)任活動(dòng)記錄員,請(qǐng)用列表或畫樹狀圖的方法,求恰好選中1名男生和1名女生擔(dān)任活動(dòng)記錄員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知梯形中,,且,,。

⑴如圖,P上的一點(diǎn),滿足∠BPC=A,求AP的長(zhǎng);

⑵如果點(diǎn)P邊上移動(dòng)(點(diǎn)P與點(diǎn)不重合),且滿足∠BPE=A交直線于點(diǎn)E,同時(shí)交直線DC于點(diǎn)。

①當(dāng)點(diǎn)在線段DC的延長(zhǎng)線上時(shí),設(shè)CQ=y,求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

②寫CE=1時(shí),寫出AP的長(zhǎng)(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線上有A,B兩個(gè)觀測(cè)站,AB的正東方向,有一艘小船停在點(diǎn)P,A測(cè)得小船在北偏西60°的方向,從B測(cè)得小船在北偏東45°的方向,BP=6km.

(1)A、B兩觀測(cè)站之間的距離;

(2)小船從點(diǎn)P處沿射線AP的方向前行,求觀測(cè)站B與小船的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組同學(xué)借助無人機(jī)航拍測(cè)量某公園內(nèi)一座古塔高度.如圖,無人機(jī)在距離地面168米的A處,測(cè)得該塔底端點(diǎn)B的俯角為40°,然后向古塔方向沿水平面飛行50秒到達(dá)點(diǎn)C處,此時(shí)測(cè)得該塔頂端點(diǎn)D的俯角為60°.已知無人機(jī)的飛行速度為3/秒,則這座古塔的高度約為_____米(參考計(jì)算:sin40°≈064cos40°≈077tan40°≈0.84.1.41. 1.73.結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)a使關(guān)于x的不等式組至少有3個(gè)整數(shù)解,且使關(guān)于y的分式方程2有非負(fù)整數(shù)解,則滿足條件的所有整數(shù)a的和是(  )

A. 14B. 15C. 23D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物y=﹣x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)CCD兩點(diǎn)關(guān)于拋物線對(duì)稱軸對(duì)稱,連接BDy軸于點(diǎn)E,拋物線對(duì)稱軸交x軸于點(diǎn)F

1)點(diǎn)P為線段BD上方拋物線上的一點(diǎn),連接PD,PE.點(diǎn)My軸上一點(diǎn),過點(diǎn)MMNy軸交拋物線對(duì)稱軸于點(diǎn)N.當(dāng)△PDE面積最大時(shí),求PM+MN+NF的最小值;

2)如圖2,在(1)中PM+MN+NF取得最小值時(shí),將△PME繞點(diǎn)P順時(shí)針旋轉(zhuǎn)120°后得到△PME′,點(diǎn)GMN的中點(diǎn),連接MG交拋物線的對(duì)稱軸于點(diǎn)H,過點(diǎn)H作直線lPM,點(diǎn)R是直線l上一點(diǎn),在平面直角坐標(biāo)系中是否存在一點(diǎn)S,使以點(diǎn)M′,點(diǎn)G,點(diǎn)R,點(diǎn)S為頂點(diǎn)的四邊形是矩形?若存在,直接寫出點(diǎn)S的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣出180件;如果每件商品的售價(jià)每上漲1元,則每周就會(huì)少賣出5件,但每件售價(jià)不能高于55元,設(shè)每件商品的售價(jià)上漲x(x為整數(shù)),每周的銷售利潤(rùn)為y元.

(1)yx的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤(rùn)恰好是2145元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知B港口位于A觀測(cè)點(diǎn)北偏東53.2°方向,且其到A觀測(cè)點(diǎn)正北方向的距離BD的長(zhǎng)為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達(dá)到C處,現(xiàn)測(cè)得C處位于A觀測(cè)點(diǎn)北偏東79.8°方向,求此時(shí)貨輪與A觀測(cè)點(diǎn)之間的距離AC的長(zhǎng)(精確到0.1km).(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

同步練習(xí)冊(cè)答案