【題目】某校舉行漢字聽(tīng)寫(xiě)大賽,學(xué)習(xí)對(duì)參賽者獲獎(jiǎng)情況進(jìn)行統(tǒng)計(jì),根據(jù)比賽成績(jī)列出統(tǒng)計(jì)表,并繪制了扇形統(tǒng)計(jì)圖
(1)參加此次比賽的學(xué)生共______________人.
(2)
(3)若從一等獎(jiǎng)中隨機(jī)抽取兩名學(xué)生,參加市級(jí)漢字聽(tīng)寫(xiě)大賽,請(qǐng)用樹(shù)狀圖或列表的方法,求出所選的兩名學(xué)生正好為一男一女的概率.
等次 | 男生 | 女生 |
一等獎(jiǎng) | 3 | m |
二等獎(jiǎng) | 6 | 12 |
三等獎(jiǎng) | 8 | 9 |
鼓勵(lì)獎(jiǎng) | 6 | n |
【答案】(1)50;(2)2,4,34;(3)
【解析】
(1)用獲得二等獎(jiǎng)的人數(shù)除以二等獎(jiǎng)所占百分比即得答案;
(2)用總?cè)藬?shù)×10%減去獲得一等獎(jiǎng)的男生人數(shù)即為m的值,獲得三等獎(jiǎng)的百分比=(8+9)÷總?cè)藬?shù),進(jìn)而可得t的值,用總?cè)藬?shù)×鼓勵(lì)獎(jiǎng)所占百分比-獲得鼓勵(lì)獎(jiǎng)的男生人數(shù)即為n的值;
(3)先列出表格求出所有可能的結(jié)果數(shù),再找出所選的兩名學(xué)生正好為一男一女的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算即可.
解:(1)(6+12)÷36%=50;
故答案為:50;
(2)m=50×10%-3=2,
t%=(8+9)÷50=34%,∴t=34,
n=50×(1-36%-34%-10%)-6=4,
故答案為:2,4,34;
(3)一等獎(jiǎng)共有5人,三男二女,分別設(shè)三男為A,B,C;兩女為M,N,列表如下:
由表可知,共有20種等可能的結(jié)果,其中一男一女的結(jié)果有12種,
所以所選的兩名學(xué)生正好為一男一女的概率為=.
答:所選的兩名學(xué)生正好為一男一女的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B(-2,0)、點(diǎn)C(8,0)兩點(diǎn),與y軸交于點(diǎn)A.
(1)求二次函數(shù)的表達(dá)式;
(2)連接AC、AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過(guò)點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,線段AC上有一動(dòng)點(diǎn)P,連接PM,求PM+PC的值最小時(shí),點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)(問(wèn)題發(fā)現(xiàn))如圖1,△ABC和△ADE均為等邊三角形,點(diǎn)B,D,E在同一條直線上.填空:①線段BD,CE之間的數(shù)量關(guān)系為 ;②∠BEC = °.
(2)(類(lèi)比探究)如圖2,△ABC和△ADE均為等腰直角三角形,∠ACB=∠AED=90°,AC=BC,AE=DE,點(diǎn)B,D,E在同一條直線上,請(qǐng)判斷線段BD,CE之間的數(shù)量關(guān)系及∠BEC的度數(shù),并給出證明.
(3)如圖3,在△ABC中,∠ACB=90°,∠A=30°,AB = 5,點(diǎn)D在AB 邊上,DE⊥AC于點(diǎn)E,AE = 3,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)DE所在直線經(jīng)過(guò)點(diǎn)B時(shí),CE的長(zhǎng)是多少?(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,點(diǎn)O是邊AC的中點(diǎn).
(1)在圖1中,將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)n°得到△A1B1C1,使邊A1B1經(jīng)過(guò)點(diǎn)C.求n的值.
(2)將圖1向右平移到圖2位置,在圖2中,連結(jié)AA1、AC1、CC1.求證:四邊形AA1CC1是矩形;
(3)在圖3中,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)m°得到△A2B2C2,使邊A2B2經(jīng)過(guò)點(diǎn)A,連結(jié)AC2、A2C、CC2.
①請(qǐng)你直接寫(xiě)出m的值和四邊形AA2CC2的形狀;
②若AB=,請(qǐng)直接寫(xiě)出AA2的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣x2+2bx+1﹣2b(b為常數(shù)).
(1)若點(diǎn)(2,5)在該拋物線上,求b的值;
(2)若該拋物線的頂點(diǎn)坐標(biāo)是(m,n),求n關(guān)于m的函數(shù)解析式;
(3)若拋物線與x軸交點(diǎn)之間的距離大于4,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),直線經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)若點(diǎn)是直線上方拋物線的一部分上的動(dòng)點(diǎn),過(guò)點(diǎn)P作軸于點(diǎn)F,交直線AB于點(diǎn)D,求線段的最大值
(3)在(2)的條件下,連接,點(diǎn)是拋物線對(duì)稱(chēng)軸上的一動(dòng)點(diǎn),在拋物線上是否存在點(diǎn),使得以為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AC=BC,∠ACB=α,點(diǎn)D為直線BC上一動(dòng)點(diǎn),過(guò)點(diǎn)D作DF∥AC交直線AB于點(diǎn)F,將AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)α得到ED,ED交直線AB于點(diǎn)O,連接BE.
(1)問(wèn)題發(fā)現(xiàn):
如圖1,α=90°,點(diǎn)D在邊BC上,猜想:
①AF與BE的數(shù)量關(guān)系是 ;
②∠ABE= 度.
(2)拓展探究:
如圖2,0°<α<90°,點(diǎn)D在邊BC上,請(qǐng)判斷AF與BE的數(shù)量關(guān)系及∠ABE的度數(shù),并給予證明.
(3)解決問(wèn)題
如圖3,90°<α<180°,點(diǎn)D在射線BC上,且BD=3CD,若AB=8,請(qǐng)直接寫(xiě)出BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線y=ax2+4x+c經(jīng)過(guò)原點(diǎn)O(0,0)和點(diǎn)A (3,3),P為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為B(m,0),并與直線OA交于點(diǎn)C.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線OA上方時(shí),求線段PC的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com