【題目】E、F分別是邊長為4的菱形ABCD中邊BC、CD上的點,∠B=∠EAF=60°,△AEF的周長為,則的最小值是_______.

【答案】

【解析】

根據(jù)菱形的性質(zhì)和利用已知條件求全等三角形來求解.

如圖所示,連接AC;

∵四邊形ABCD是菱形,
AB=BC,
∵∠B=60°,
∴△ABC是等邊三角形,
AB=AC,ACB=B=60°,
∵∠BCD=180°-B=120°,
∴∠ACF=BCD-ACB=60°,
∴∠B=ACF,
∵∠BAE+EAC=EAC+CAF=60°,
∴∠BAE=CAF,
BAECAF中,
BAE=CAF,AB=AC,B=ACF,
∴△ABE≌△ACF(ASA),
AE=AF,
∵∠EAF=60°,
∴△AEF是等邊三角形;

m=3AE

∵垂線定理,從直線外一點到這條直線的所有線段中,垂直線段最短;

∴AE最小為2;

∴m最小為6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=ACAD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列出下列問題中的函數(shù)關(guān)系式,并判斷它們是否為反比例函數(shù).

(1)某農(nóng)場的糧食總產(chǎn)量為1 500t,則該農(nóng)場人數(shù)y(人)與平均每人占有糧食量x(t)的函數(shù)關(guān)系式;

(2)在加油站,加油機顯示器上顯示的某一種油的單價為每升4.75元,總價從0元開始隨著加油量的變化而變化,則總價y(元)與加油量x(L)的函數(shù)關(guān)系式;

(3)小明完成100m賽跑時,時間t(s)與他跑步的平均速度v(m/s)之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 在平面直角坐標系中,點 A,BC 的坐標分別為 A-2,4),B4,2),C2,-1.

)請在平面直角坐標系內(nèi),畫出ABC 關(guān)于 x 軸的對稱圖形A1B1C1,其中,點 A,B,C 的對應(yīng)點分別為A1,B1,C1;

)請寫出點C2,-1)關(guān)于直線m(直線m上格點的橫坐標都為-1)對稱的點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在中,,,的平分線,交于點,的中點,連接并延長交的延長線于點,連接.

求證:(1;

2為等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一張長方形紙片ABCD中,AB=25cm,AD=20cm,現(xiàn)將這張紙片按下列圖示方法折疊,請解決下列問題.

(1)如圖(1),折痕為DE,點A的對應(yīng)點F在CD上,求折痕DE的長;

(2)如圖(2),H,G分別為BC,AD的中點,A的對應(yīng)點F在HG上,折痕為DE,求重疊部分的面積;

(3)如圖(3),在圖(2)中,把長方形ABCD沿著HG對開,變成兩張長方形紙片,按圖示方式將兩張紙片任意疊合后,判斷重疊四邊形的形狀,并證明;

(4)在(3)中,重疊四邊形的周長是否存在最大值或最小值?如果存在,試求出來;如果不存在,試簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A.在一個角的內(nèi)部(包括頂點)到角的兩邊距離相等的點的軌跡是這個角的平分線

B.到點距離等于的點的軌跡是以點為圓心,為半徑的圓

C.到直線距離等于的點的軌跡是兩條平行于且與的距離等于的直線

D.等腰的底邊固定,頂點的軌跡是線段的垂直平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,經(jīng)過點C⊙O與斜邊AB相切于點P,AC=8,BC=6.

(1)當(dāng)點OAC上時,求證:2∠ACP=∠B;

(2)在(1)的條件下,求⊙O的半徑.

(3)若圓心O△ABC之外,則CP的變化范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,中,.

1)按要求作出圖形:

①延長到點,使;②延長到點,使;③連接.

2)猜想(1)中線段的大小關(guān)系,并證明你的結(jié)論.

解:(1)完成作圖

2的大小關(guān)系是______

證明:

查看答案和解析>>

同步練習(xí)冊答案