【題目】如圖,在△ABC中,∠ACB=90°,經(jīng)過點(diǎn)C的⊙O與斜邊AB相切于點(diǎn)P,AC=8,BC=6.
(1)當(dāng)點(diǎn)O在AC上時(shí),求證:2∠ACP=∠B;
(2)在(1)的條件下,求⊙O的半徑.
(3)若圓心O在△ABC之外,則CP的變化范圍是 .
【答案】(1)詳見解析;(2)3;(3)<CP≤8.
【解析】
(1)根據(jù)BC與AC垂直得到BC與圓相切,再由AB與圓O相切于點(diǎn)P,利用切線長(zhǎng)定理得到BC=BP,利用等邊對(duì)等角得到一對(duì)角相等,再由∠ACP+∠BCP=90°,等量代換即可得證;
(2)在直角三角形ABC中,利用勾股定理求出AB的長(zhǎng),根據(jù)AC與BC垂直,得到BC與圓O相切,連接OP,BO,再由AB與圓O相切,得到OP垂直于AB,在Rt△OAP中,應(yīng)用勾股定理即可得到結(jié)論.
(3)設(shè)OC=x,則OP=x,OA=AC-OC=8-x,求出PA的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出BO的長(zhǎng),根據(jù)BC=BP,OC=OP,得到BO垂直平分CP,根據(jù)面積法求出CP的長(zhǎng),由題意可知,當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),CP最長(zhǎng),即可確定出CP的范圍.
(1)∵BC⊥OC,且點(diǎn)C在⊙O上,
∴BC與⊙O相切.
∵⊙O與AB邊相切于點(diǎn)P,∴BC=BP,
∴∠BCP=∠BPC=(180°∠B) ,
∵∠ACP+∠BCP=90°,
∴∠ACP=90°-∠BCP=90°-(180°∠B)=∠B.即2∠ACP=∠B;
(2) 連結(jié)OP
在Rt△ABC中,由勾股定理,求得AB=10.
∵BC、BA分別與⊙O切于C點(diǎn)、P點(diǎn),
∴BP=BC=6,
∴AP=AB-BP=4,
在Rt△OAP中,OA=AC-OC=8-r,AP=4,OP=r,
∵OA2=OP2+PA2,
∴(8-r)2=r2+42,
∴r=3;
(3)<CP≤8.
如圖,當(dāng)點(diǎn)O在CB上時(shí),OC為⊙O的半徑,
∵AC⊥OC,且點(diǎn)C在⊙O上,∴AC與⊙O相切,
連接OP、AO,
∵⊙O與AB邊相切于點(diǎn)P,∴OP⊥AB,
設(shè)OC=x,則OP=x,OB=BC-OC=6-x,
∵AC=AP,∴BP=AB-AP=10-8=2,
在△OPA中,∠OPA=90°,
根據(jù)勾股定理得:OP2+BP2=OB2,即x2+22=(6-x)2,解得:x=,
在△ACO中,∠ACO=90°,AC2+OC2=AO2,∴AO=.
∵AC=AP,OC=OP,∴AO垂直平分CP.
∴根據(jù)面積法得:CP==,則符合條件的CP長(zhǎng)大于.
由題意可知,當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),CP最長(zhǎng),
綜上,當(dāng)點(diǎn)O在△ABC外時(shí), <CP≤8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB分別與兩坐標(biāo)軸交于點(diǎn)A(4,0).B(0,8),點(diǎn)C的坐標(biāo)為(2,0).
(1)求直線AB的解析式;
(2)在線段AB上有一動(dòng)點(diǎn)P.
①過點(diǎn)P分別作x,y軸的垂線,垂足分別為點(diǎn)E,F,若矩形OEPF的面積為6,求點(diǎn)P的坐標(biāo).
②連結(jié)CP,是否存在點(diǎn)P,使與相似,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】E、F分別是邊長(zhǎng)為4的菱形ABCD中邊BC、CD上的點(diǎn),∠B=∠EAF=60°,△AEF的周長(zhǎng)為,則的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點(diǎn),連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖, 在中, ,,,P是邊BC上的一動(dòng)點(diǎn),過點(diǎn)P作PE⊥AB,垂足為E,延長(zhǎng)PE至點(diǎn)Q,使PQ=PC, 聯(lián)結(jié)交邊AB于點(diǎn).
(1)求AD的長(zhǎng);
(2)設(shè),的面積為y, 求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(3)過點(diǎn)C作, 垂足為F, 聯(lián)結(jié)PF、QF, 試探索當(dāng)點(diǎn)P在邊BC的什么位置時(shí),為等邊三角形?請(qǐng)指出點(diǎn)P的位置并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由27個(gè)相同的小立方塊搭成的幾何體,它的三個(gè)視圖是3×3的正方形,若拿掉若干個(gè)小立方塊(幾何體不倒掉),其三個(gè)視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個(gè)數(shù)為( )
A. 10 B. 12 C. 15 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:(1)三角形的一條中線把三角形分成面積相等的兩部分;(2)有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等的兩三角形全等;(3)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)坐標(biāo)為;(4)若,則;其中真命題的有 ( )
A. (1)、(2)B. (1)、(3)C. (2)、(3)D. (3)、(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)的圖象與軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),頂點(diǎn)為,
(1)求A、B、三點(diǎn)坐標(biāo)。
(2)在平面直角坐標(biāo)系中,用列表描點(diǎn)法,作出拋物線圖象(如圖),并根據(jù)圖象回答,為何值時(shí),函數(shù)值大于0?
(3)將此拋物線向下平移2個(gè)單位,請(qǐng)寫出平移后的解析式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com