【題目】四邊形的圓內(nèi)接四邊形,線段的直徑,連結(jié).點(diǎn)是線段上的一點(diǎn),連結(jié),且,的延長線與的延長線相交與點(diǎn)

(1)求證:四邊形是平行四邊形;

(2)若,

①求證:為等腰直角三角形;

②求的長度.

【答案】(1)見解析;(2)①見解析;②.

【解析】

1)由圓周角的定理可得,可證,由一組對(duì)邊平行且相等的是四邊形是平行四邊形可證四邊形是平行四邊形;

2由平行線的性質(zhì)可證,由,可證為等腰直角三角形;

通過證明,可得,可得,通過證明,可得,可得,可求,由等腰直角三角形的性質(zhì)可求的長度.

證明:(1)∵,

,且

∴四邊形是平行四邊形,

2是直徑,

,且,

,

,且,

,

,且,

為等腰直角三角形;

∵四邊形的圓內(nèi)接四邊形,

,且,

,

,且,

,

,

,

,

,

,

,且為等腰直角三角形,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高爾基說:書,是人類進(jìn)步的階梯.閱讀可以豐富知識(shí)、拓展視野、充實(shí)生活等諸多益處.為了解學(xué)生的課外閱讀情況,某校隨機(jī)抽查了部分學(xué)生閱讀課外書冊(cè)數(shù)的情況,并繪制出如下統(tǒng)計(jì)圖,其中條形統(tǒng)計(jì)圖因?yàn)槠茡p丟失了閱讀5冊(cè)書數(shù)的數(shù)據(jù).

1)求條形圖中丟失的數(shù)據(jù),并寫出閱讀書冊(cè)數(shù)的眾數(shù)和中位數(shù);

2)根據(jù)隨機(jī)抽查的這個(gè)結(jié)果,請(qǐng)估計(jì)該校1200名學(xué)生中課外閱讀5冊(cè)書的學(xué)生人數(shù);

3)若學(xué)校又補(bǔ)查了部分同學(xué)的課外閱讀情況,得知這部分同學(xué)中課外閱讀最少的是6冊(cè),將補(bǔ)查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒有改變,試求最多補(bǔ)查了多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)、兩種商品,購買1個(gè)商品比購買1個(gè)商品多花10元,并且花費(fèi)300元購買商品和花費(fèi)100元購買商品的數(shù)量相等.

1)求購買一個(gè)商品和一個(gè)商品各需要多少元;

2)商店準(zhǔn)備購買、兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線的頂點(diǎn)為,經(jīng)過拋物線上的兩點(diǎn)的直線交拋物線的對(duì)稱軸于點(diǎn)

1)求拋物線的解析式和直線的解析式.

2)在拋物線上兩點(diǎn)之間的部分(不包含兩點(diǎn)),是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

3)若點(diǎn)在拋物線上,點(diǎn)軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線軸交于),兩點(diǎn),與軸交于點(diǎn),連接

1)求該拋物線的解析式,并寫出它的對(duì)稱軸;

2)點(diǎn)為拋物線對(duì)稱軸上一點(diǎn),連接,若,求點(diǎn)的坐標(biāo);

3)已知,若是拋物線上一個(gè)動(dòng)點(diǎn)(其中),連接,求面積的最大值及此時(shí)點(diǎn)的坐標(biāo).

4)若點(diǎn)為拋物線對(duì)稱軸上一點(diǎn),拋物線上是否存在點(diǎn),使得以為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F分別是正方形ABCD的邊CBDC延長線上的點(diǎn),且BE=CF,過點(diǎn)EFGBF,交正方形外角的平分線CG于點(diǎn)G,連接GF.求證:

1AEBF

2)四邊形BEGF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).

1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________,線段的長為__________,拋物線的解析式為__________.

2)點(diǎn)是線段下方拋物線上的一個(gè)動(dòng)點(diǎn).

①如果在軸上存在點(diǎn),使得以點(diǎn)、、為頂點(diǎn)的四邊形是平行四邊形.求點(diǎn)的坐標(biāo).

②如圖2,過點(diǎn)交線段于點(diǎn),過點(diǎn)作直線于點(diǎn),交軸于點(diǎn),記,求關(guān)于的函數(shù)解析式;當(dāng)時(shí),試比較的對(duì)應(yīng)函數(shù)值的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)的圖象在第一象限交于點(diǎn)A3,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB4.

1)求函數(shù)ykx+b的解析式;

2)結(jié)合圖象直接寫出不等式組0kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(jí)(1)班全班50名同學(xué)組成五個(gè)不同的興趣愛好小組,每人都參加且只能參加一個(gè)小組,統(tǒng)計(jì)(不完全)人數(shù)如下表:

編號(hào)

人數(shù)

15

20

10

已知前面兩個(gè)小組的人數(shù)之比是

解答下列問題:

1 

2)補(bǔ)全條形統(tǒng)計(jì)圖:

3)若從第一組和第五組中任選兩名同學(xué),求這兩名同學(xué)是同一組的概率.(用樹狀圖或列表把所有可能都列出來)

查看答案和解析>>

同步練習(xí)冊(cè)答案