【題目】如圖,AD是的中線,E是AD上一點(diǎn),連接BE并延長(zhǎng)交AC于點(diǎn)F,若EF=AF, BE=7.5, CF=6,則EF=( ).
A.2.5B.2C.1.5D.1
【答案】C
【解析】
延長(zhǎng)AD,使DG=AD,連接BG,由“SAS”可證△ADC≌△GDB,可得AC=DG=CF+AF=6+AF,∠DAC=∠G,由等腰三角形的性質(zhì)可得BE=BG=7.5,即可求EF的長(zhǎng).
解:如圖,延長(zhǎng)AD,使DG=AD,連接BG,
∵AD是△ABC的中線,
∴BD=CD,且DG=AD,∠ADC=∠BDG,
∴△ADC≌△GDB(SAS),
∴AC=DG=CF+AF=6+AF,∠DAC=∠G,
∵EF=AF,
∴∠DAC=∠AEF,
∴∠G=∠AEF=∠BEG,
∴BE=BG=7.5,
∴6+AF=BG=7.5,
∴AF=1.5=EF,
故選擇:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說(shuō)明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過(guò)程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:數(shù)和形是數(shù)學(xué)的兩個(gè)主要研究對(duì)象,我們經(jīng)常運(yùn)用數(shù)形結(jié)合,樹(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問(wèn)題,小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時(shí)發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1(x1,y1),P2(x2,y2),可通過(guò)構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2=,他還利用圖2證明了線段P1P2的中點(diǎn)P(x,y),P的坐標(biāo)公式:x=,y=.
啟發(fā)應(yīng)用:
如圖3:在平面直角坐標(biāo)系中,已知A(8,0),B(0,6),C(1,7),⊙M經(jīng)過(guò)原點(diǎn)O及點(diǎn)A,B,
(1)求⊙M的半徑及圓心M的坐標(biāo);
(2)判斷點(diǎn)C與⊙M的位置關(guān)系,并說(shuō)明理由;
(3)若∠BOA的平分線交AB于點(diǎn)N,交⊙M于點(diǎn)E,分別求出OE的表達(dá)式y1,過(guò)點(diǎn)M的反比例函數(shù)的表達(dá)式y2,并根據(jù)圖象,當(dāng)y2>y1>0時(shí),請(qǐng)直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的較短對(duì)角線BD為4,∠ADB=60°,E、F分別在AD,CD上,且∠EBF=60°.
(1)求證:△ABE≌△DBF;
(2)判斷△BEF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(0<2a<b)的頂點(diǎn)為P(x0,y0),點(diǎn)A(1,yA),B(0,yB),C(﹣1,yC)在該拋物線上,當(dāng)y0≥0恒成立時(shí),的最小值為( 。
A. 1 B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)銷水杯,電熱水壺兩種商品,水杯每個(gè)進(jìn)價(jià)15元,售價(jià)20元;電熱水壺每個(gè)進(jìn)價(jià)35元,售價(jià)45元.
(1)若該商場(chǎng)同時(shí)購(gòu)進(jìn)水杯、電熱水壺共100件,恰好用去2700元,求能購(gòu)進(jìn)水杯、電熱水壺各多少個(gè)?
(2)商場(chǎng)要求小明用1050元的錢(必須全部用完)采購(gòu)水杯、電熱水壺(或其中一種商品),且還要求總利潤(rùn)不少于340元(假設(shè)商品全部賣完),請(qǐng)你確定所有的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一條24cm的細(xì)繩圍成一個(gè)等腰三角形。
(1)如果腰長(zhǎng)是底邊的2倍,那么各邊的長(zhǎng)是多少?
(2)能圍成有一邊長(zhǎng)為4cm的等腰三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某校學(xué)生的身高狀況,隨機(jī)對(duì)該校男生、女生的身高進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制如圖所示的統(tǒng)計(jì)圖表:
組別 | 身高(cm) |
A | x<150 |
B | 150≤x<155 |
C | 155≤x<160 |
D | 160≤x<165 |
E | x≥165 |
已知女生身高在A組的有8人,根據(jù)圖表中提供的信息,回答下列問(wèn)題:
(1)男生身高的中位數(shù)落在 組(填組別字母序號(hào));
(2)在樣本中,身高在150≤x<155之間的人數(shù)共有 人,身高人數(shù)最多的在 組(填組別序號(hào));
(3)已知該校共有男生400人、女生420人,請(qǐng)估計(jì)身高不足160cm的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°, CD⊥AB于點(diǎn)D,∠A=30°,BD=1.5cm ,則AB=______cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com