【題目】如圖1,已知P為正方形ABCD的對角線AC上一點(不與A、C重合),PE⊥BC于點E,PF⊥CD于點F.
(1)求證:BP=DP;
(2)如圖2,若四邊形PECF繞點C按逆時針方向旋轉(zhuǎn),在旋轉(zhuǎn)過程中是否總有BP=DP?若是,請給予證明;若不是,請用反例加以說明;
(3)試選取正方形ABCD的兩個頂點,分別與四邊形PECF的兩個頂點連接,使得到的兩條線段在四邊形PECF繞點C按逆時針方向旋轉(zhuǎn)的過程中長度始終相等,并證明你的結(jié)論.
【答案】
(1)證明:證法一:在△ABP與△ADP中,
∵AB=AD∠BAC=∠DAC,AP=AP,
∴△ABP≌△ADP,
∴BP=DP.
證法二:利用正方形的軸對稱性,可得BP=DP.
(2)證明:解:不是總成立.
當四邊形PECF的點P旋轉(zhuǎn)到BC邊上時,DP>DC>BP,此時BP=DP不成立,
是當P點在AC的延長線上時,BP=DP,
說明:未用舉反例的方法說理的不得分.
(3)解:連接BE、DF,則BE與DF始終相等,
,
在圖1中,由正方形ABCD可證:
AC平分∠BCD,
∵PE⊥BC,PF⊥CD,
∴PE=PF,∠BCD=90°,
∴四邊形PECF為正方形.
∴CE=CF,
∵∠DCF=∠BCE,
BC=CD,
∴△BEC≌△DFC,
∴BE=DF.
【解析】(1)由正方形的性質(zhì)可證△ABP≌△ADP,即BP=DP;(2)當四邊形PECF的點P旋轉(zhuǎn)到BC邊上時,DP>DC>BP,此時BP=DP不成立;(3)由旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì)可證△BEC≌△DFC,即BE=DF.
【考點精析】利用全等三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)對題目進行判斷即可得到答案,需要熟知全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是 的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.
(1)求證:AC=CD;
(2)若OB=2,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c(a≠0)經(jīng)過A、B、C三點,點A、C的坐標分別是(0,4)、(﹣1,0).
(1)求此拋物線的解析式;
(2)點P是第一象限內(nèi)拋物線上的一動點,當△ABP的面積最大時,求出此時P的坐標及面積的最大值;
(3)若G為拋物線上的一動點,F(xiàn)為x軸上的一動點,點D坐標為(1,4),點E坐標為(1,0),當D、E、F、G構(gòu)成平行四邊形時,請直接寫出點G的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個點在第一象限及x軸、y軸上運動,且每秒移動一個單位,在第1秒鐘,它從原點運動到(0,1),然后接著按圖中箭頭所示方向運動[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第35秒時質(zhì)點所在位置的坐標是( )
A.(4,0)
B.(0,5)
C.(5,0)
D.(5,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),D是OA的中點,點E在AB上,當△CDE的周長最小時,點E的坐標為( 。
A.(3,1)
B.(3, )
C.(3, )
D.(3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在棋盤中建立如圖所示的平面直角坐標系,三顆棋子A,O,B的位置如圖所示,它們的坐標分別是(﹣1,1),(0,0)和(1,0)
(1)如圖,添加棋子C,使A,O,B,C四顆棋子成為一個軸對稱圖形,請在圖中畫出該圖形的對稱軸;
(2)在其他個點位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個軸對稱圖形,請直接寫出棋子P的位置坐標(寫出2個即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC= CD.
簡單應(yīng)用:
(1)在圖①中,若AC= ,BC=2 ,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上, = ,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE= AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點E在AB上,過點E作EF⊥BC,點G在FE的延長線上,且GA=GE.
(1)求證:AG與⊙O相切.
(2)若AC=6,AB=8,BE=3,求線段OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com