【題目】如圖,已知拋物線經(jīng)過點A(3,1)與點B(04)

(1)求該拋物線的解析式及頂點坐標(biāo);

(2)在第三象限內(nèi)的拋物線上有一點P,使得PAAB,求點P的坐標(biāo);

(3)若點C(,)在該拋物線上,當(dāng)3時,15,請確定的取值范圍.

【答案】(1) , 頂點坐標(biāo)為(1,5); (2)P的坐標(biāo)為(2,4); (3) 的取值范圍是:-1≤≤1.

【解析】

1)將代入,解關(guān)于b、c的二元一次方程組,得到解析式進而求出頂點坐標(biāo);

2)分別過B與點P軸的平行線BD、PE,過點A軸的垂線交BDD、交PE于點E,證出AEPE,設(shè)點P的坐標(biāo)為,分別用含m的代數(shù)式表示出AEPE的長,進而求出點P的坐標(biāo);

3)根據(jù)題意,分別求出q的最大值與最小值,從而確定q的取值范圍.

(1)代入

解得

,

∴所求的拋物線的解析式為: 頂點坐標(biāo)為(1,5)

(2)如圖,分別過B與點P軸的平行線BD、PE,過點A軸的垂線交BDD、交PE于點E

PAAB

∴∠DAB+PAE90°.

A(3,1)、B(0,4)BDAD3

∴∠DAB45°

∴∠PAE90°-∠DAB90°45°45°

∴∠PAE=∠APE45°

AEPE

設(shè)點P的坐標(biāo)為

AE

PE

解得:(P在第三象限,不合題意,舍去)

時,

∴點P的坐標(biāo)為(2,4).

(3)1n5且拋物線的頂點為(1,5)

∴區(qū)間包含頂點

的最大值為1

中,當(dāng)時,或者

的最小值為-1

的取值范圍是:-1≤≤1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°,AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學(xué)教材第94頁的部分內(nèi)容.

線段垂直平分線

我們已知知道線段是軸對稱圖形,線段的垂直一部分線是線段的對稱軸,如圖直線是線段的垂直平分線,上任一點,連結(jié)、,將線段與直線對稱,我們發(fā)現(xiàn)完全重合,由此都有:線段垂直平分線的性質(zhì)定理,線段垂直平分線上的點到線段的距離相等.

已知:如圖,,垂足為點,,點是直線上的任意一點.

求證:.

圖中的兩個直角三角形,只要證明這兩個三角形全等,便可證明(請寫出完整的證明過程)

請根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程,定理應(yīng)用.

(1)如圖②,在中,直線、、分別是邊、、的垂直平分線.

求證:直線、、交于點.

(2)如圖③,在中,,邊的垂直平分線交于點,邊的垂直平分線交于點,若,,則的長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織全校學(xué)生進行了一次社會主義核心價值觀知識競賽,賽后隨機抽取了各年級部分學(xué)生成績進行統(tǒng)計,制作如下頻數(shù)分布表和頻數(shù)分布直方圖.請根據(jù)圖表中提供的信息,解答下列問題:

分數(shù)段(表示分數(shù))

頻數(shù)

頻率

4

0.1

8

0.3

10

0.25

6

0.15

1)請求出該校隨機抽取了____學(xué)生成績進行統(tǒng)計;

2)表中____,____,并補全直方圖;

3)若用扇形統(tǒng)計圖描述此成績統(tǒng)計分布情況,則分數(shù)段對應(yīng)扇形的圓心角度數(shù)是___;

4)若該校共有學(xué)生8000人,請估計該校分數(shù)在的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)殖場為了響應(yīng)黨中央的扶貧政策,今年起采用場內(nèi)+農(nóng)戶養(yǎng)殖模式,同時加強對蛋雞的科學(xué)管理,蛋雞的產(chǎn)蛋率不斷提高,三月份和五月份的產(chǎn)蛋量分別是2.5kg3.6kg,現(xiàn)假定該養(yǎng)殖場蛋雞產(chǎn)蛋量的月增長率相同.

1)求該養(yǎng)殖場蛋雞產(chǎn)蛋量的月平均增長率;

2)假定當(dāng)月產(chǎn)的雞蛋當(dāng)月在各銷售點全部銷售出去,且每個銷售點每月平均銷售量最多為0.32kg.如果要完成六月份的雞蛋銷售任務(wù),那么該養(yǎng)殖場在五月份已有的銷售點的基礎(chǔ)上至少再增加多少個銷售點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,弦CDAB于點E ,G是弧AC上的點,AG,DC延長線交于點F

1)求證:FGC=∠AGD

2)若BE=2,CD=8,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一種推磨工具模型,圖2是它的示意圖,已知ABPQ,APAQ3dm,AB12dm,點A在中軸線l上運動,點B在以O為圓心,OB長為半徑的圓上運動,且OB4dm

1)如圖3,當(dāng)點B按逆時針方向運動到B′時,AB′與O相切,則AA′=__dm

2)在點B的運動過程中,點P與點O之間的最短距離為__dm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(﹣2,0),且對稱軸為直線x=1,其部分圖象如圖所示.對于此拋物線有如下四個結(jié)論:

;

;

③若nm0,則時的函數(shù)值小于時的函數(shù)值;

④點(,0)一定在此拋物線上.

其中正確結(jié)論的個數(shù)是( )

A.4個B.3個

C.2個D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某辦公樓AB的右邊有一建筑物CD,在建設(shè)物CD離地面2米高的點E處觀測辦公樓頂A點,測得的仰角=,在離建設(shè)物CD 25米遠的F點觀測辦公樓頂A點,測得的仰角=B,F,C在一條直線上).

1)求辦公樓AB的高度;

2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案