【題目】圖1是一種推磨工具模型,圖2是它的示意圖,已知AB⊥PQ,AP=AQ=3dm,AB=12dm,點(diǎn)A在中軸線l上運(yùn)動(dòng),點(diǎn)B在以O為圓心,OB長(zhǎng)為半徑的圓上運(yùn)動(dòng),且OB=4dm.
(1)如圖3,當(dāng)點(diǎn)B按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到B′時(shí),A′B′與⊙O相切,則AA′=__dm.
(2)在點(diǎn)B的運(yùn)動(dòng)過(guò)程中,點(diǎn)P與點(diǎn)O之間的最短距離為__dm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為全面貫徹黨的教育方針,堅(jiān)持“健康第一”的教育理念,促進(jìn)學(xué)生健康成長(zhǎng),提高體質(zhì)健康水平,成都市調(diào)整體育中考實(shí)施方案:分值增加至60,男1000米(女800米)必考,足球、籃球、排球“三選一”…,從2019年秋季新入學(xué)的七年級(jí)起開(kāi)始實(shí)施.某中學(xué)為了解七年級(jí)學(xué)生對(duì)三大球類運(yùn)動(dòng)的喜愛(ài)情況,從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查問(wèn)卷,通過(guò)分析整理繪制了如下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)求參與調(diào)查的學(xué)生中,喜愛(ài)排球運(yùn)動(dòng)的學(xué)生人數(shù),并補(bǔ)全條形圖;
(2)若該中學(xué)七年級(jí)共有400名學(xué)生,請(qǐng)你估計(jì)該中學(xué)七年級(jí)學(xué)生中喜愛(ài)籃球運(yùn)動(dòng)的學(xué)生有多少名?
(3)若從喜愛(ài)足球運(yùn)動(dòng)的2名男生和2名女生中隨機(jī)抽取2名學(xué)生,確定為該校足球運(yùn)動(dòng)員的重點(diǎn)培養(yǎng)對(duì)象,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,拋物線y=ax2+bx﹣1經(jīng)過(guò)A(﹣1,0),B(2,0)兩點(diǎn),交y軸于點(diǎn)C.
(1)求拋物線的表達(dá)式和直線BC的表達(dá)式.
(2)如圖乙,點(diǎn)P為在第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PE交直線BC于點(diǎn)D.
①在點(diǎn)P運(yùn)動(dòng)過(guò)程中,四邊形ACPB的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說(shuō)明理由.
②是否存在點(diǎn)P使得以點(diǎn)O,C,D為頂點(diǎn)的三角形是等腰三角形?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(3,1)與點(diǎn)B(0,4).
(1)求該拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在第三象限內(nèi)的拋物線上有一點(diǎn)P,使得PA⊥AB,求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)C(,)在該拋物線上,當(dāng)≤≤3時(shí),1≤≤5,請(qǐng)確定的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是邊AD上的一點(diǎn),將△CDE沿CE折疊得到△CFE,點(diǎn)F恰好落在邊AB上.
(1)證明:△AEF∽△BFC.
(2)若AB=,BC=1,作線段CE的中垂線,交AB于點(diǎn)P,交CD于點(diǎn)Q,連結(jié)PE,PC.
①求線段DQ的長(zhǎng).
②試判斷△PCE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD中,AB=8,BC=6,點(diǎn)E,F分別為AB,AD邊上任意一點(diǎn),現(xiàn)將△AEF沿直線EF對(duì)折,點(diǎn)A對(duì)應(yīng)點(diǎn)為點(diǎn)G.
(1)如圖2,當(dāng)EF∥BD,且點(diǎn)G落在對(duì)角線BD上時(shí),求DG的長(zhǎng);
(2)如圖3,連接DG,當(dāng)EF∥BD且△DFG是直角三角形時(shí),求AE的值;
(3)當(dāng)AE=2AF時(shí),FG的延長(zhǎng)線交△BCD的邊于點(diǎn)H,是否存在一點(diǎn)H,使得以E,H,G為頂點(diǎn)的三角形與△AEF相似,若存在,請(qǐng)求出AE的值;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,E為AD的中點(diǎn),以E為頂點(diǎn)作∠BEF=∠EBC,EF交CD于點(diǎn)F.
(1)求tan∠BEF;
(2)求DF:CF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長(zhǎng)AD到E,且有∠EBD=∠CAB.
⑴求證:BE是⊙O的切線;
⑵若BC=,AC=5,求圓的直徑AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形和四邊形都是正方形,且.
(1)如圖1,連接、.求證:;
(2)如圖2,將正方形繞著點(diǎn)旋轉(zhuǎn)到某一位置時(shí)恰好使得,.求的度數(shù);
(3)在(2)的條件下,當(dāng)正方形的邊長(zhǎng)為時(shí),請(qǐng)直接寫(xiě)出正方形的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com