【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動點(diǎn).
(1)求這個二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)動點(diǎn)P運(yùn)動到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.
【答案】(1)拋物線解析式為y=x2﹣3x﹣4;(2)存在滿足條件的P點(diǎn),其坐標(biāo)為( ,﹣2)(3)P點(diǎn)坐標(biāo)為(2,﹣6)時(shí),△PBC的最大面積為8.
【解析】
試題分析:(1)由A、B、C三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由題意可知點(diǎn)P在線段OC的垂直平分線上,則可求得P點(diǎn)縱坐標(biāo),代入拋物線解析式可求得P點(diǎn)坐標(biāo);(3)過P作PE⊥x軸,交x軸于點(diǎn)E,交直線BC于點(diǎn)F,用P點(diǎn)坐標(biāo)可表示出PF的長,則可表示出△PBC的面積,利用二次函數(shù)的性質(zhì)可求得△PBC面積的最大值及P點(diǎn)的坐標(biāo).
試題解析:(1)設(shè)拋物線解析式為y=ax2+bx+c,
把A、B、C三點(diǎn)坐標(biāo)代入可得,解得,
∴拋物線解析式為y=x2﹣3x﹣4;
(2)作OC的垂直平分線DP,交OC于點(diǎn)D,交BC下方拋物線于點(diǎn)P,如圖1,
∴PO=PD,此時(shí)P點(diǎn)即為滿足條件的點(diǎn),∵C(0,﹣4),∴D(0,﹣2),∴P點(diǎn)縱坐標(biāo)為﹣2,
代入拋物線解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,
∴存在滿足條件的P點(diǎn),其坐標(biāo)為(,﹣2);
(3)∵點(diǎn)P在拋物線上,∴可設(shè)P(t,t2﹣3t﹣4),
過P作PE⊥x軸于點(diǎn)E,交直線BC于點(diǎn)F,如圖2,
∵B(4,0),C(0,﹣4),∴直線BC解析式為y=x﹣4,∴F(t,t﹣4),
∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,
∴S△PBC=S△PFC+S△PFB=PFOE+PFBE=PF(OE+BE)=PFOB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,∴當(dāng)t=2時(shí),S△PBC最大值為8,此時(shí)t2﹣3t﹣4=﹣6,
∴當(dāng)P點(diǎn)坐標(biāo)為(2,﹣6)時(shí),△PBC的最大面積為8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)P在線段AB外,且PA=PB,求證:點(diǎn)P在線段AB的垂直平分線上,在證明該結(jié)論時(shí),需添加輔助線,則作法不正確的是( )
A. 作∠APB的平分線PC交AB于點(diǎn)C
B. 過點(diǎn)P作PC⊥AB于點(diǎn)C且AC=BC
C. 取AB中點(diǎn)C,連接PC
D. 過點(diǎn)P作PC⊥AB,垂足為C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B>∠C,AD⊥BC,垂足為D,AE平分∠BAC.已知∠B=65°,∠DAE=20°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠BAC=∠EAD=90o.
(1)判斷∠BAE與∠CAD的大小關(guān)系,并說明理由.
(2)當(dāng)∠EAC=60o時(shí),求∠BAD的大小.
(3)探究∠EAC與∠BAD的數(shù)量關(guān)系,請直接寫出結(jié)果,不要求說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以頂點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,分別交AC、AB于點(diǎn)M、N,再分別以點(diǎn)M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,作射線AP交邊BC于點(diǎn)D,若AC=24,AB=30,且=216,則△ABD的面積是( )
A.105B.120
C.135D.115
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是 .(寫出所有正確結(jié)論的序號)
①b>0
②a﹣b+c<0
③陰影部分的面積為4
④若c=﹣1,則b2=4a.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年3月12日植樹節(jié),美華中學(xué)為了進(jìn)一步綠化學(xué)校,計(jì)劃購買甲、乙兩種樹苗共計(jì)50棵.設(shè)購買甲種樹苗棵,有關(guān)甲、乙兩種樹苗的信息如下:甲種樹苗每棵50元,乙種樹苗每棵80元;甲種樹苗的成活率為90%,乙種樹苗的成活率為95%.
(1)根據(jù)信息填表(用含的式子表示):
樹苗類型 | 甲種樹苗 | 乙種樹苗 |
購買樹苗的數(shù)量(單位:棵) | ||
購買樹苗的費(fèi)用(單位:元) |
(2)如果購買甲、乙兩種樹苗共用去2560元,那么甲、乙兩種樹苗各購買了多少棵?
(3)如果要使這批樹苗的成活率不低于92%,請?jiān)O(shè)計(jì)一種購買甲、乙樹苗的方案,使購買甲、乙兩種樹苗的費(fèi)用最少,寫出購買方案并計(jì)算出購買甲、乙兩種樹苗的總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,線段BC的延長線過點(diǎn)E,與線段AD交于點(diǎn)F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,則∠DEF的度數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點(diǎn)E從D點(diǎn)出發(fā),以每秒4個單位的速度沿D→A→D勻速移動,點(diǎn)F從點(diǎn)C出發(fā),以每秒1個單位的速度沿CB向點(diǎn)B作勻速移動,點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動,三個點(diǎn)同時(shí)出發(fā),當(dāng)有一個點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動,假設(shè)移動時(shí)間為t秒.
(1)試說明:AD∥BC;
(2)在移動過程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請你探究這樣的情況會出現(xiàn)幾次?并分別求出此時(shí)的移動時(shí)間t和G點(diǎn)的移動距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com