【題目】如圖,在Rt△ABC中,∠C=90°,以頂點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交AC、AB于點(diǎn)M、N,再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線(xiàn)AP交邊BC于點(diǎn)D,若AC=24,AB=30,且=216,則△ABD的面積是( )
A.105B.120
C.135D.115
【答案】B
【解析】
先利用勾股定理計(jì)算出BC=18,作DH⊥AB于H,如圖,設(shè)DH=x,則BD=18-x,利用作法得AD為∠BAC的平分線(xiàn),則根據(jù)角平分線(xiàn)的性質(zhì)得CD=DH=x,接著證明△ADC≌△ADH得到AH=AC=24,所以BH=6,然后在Rt△BDH中利用勾股定理得到x,然后根據(jù)三角形的面積公式即可得到結(jié)論.
解:在Rt△ACB中,,
作DH⊥AB于H,如圖,
由作法得AD為∠BAC的平分線(xiàn),設(shè)DH=x,
∴CD=DH=x,則BD=18-x,
在Rt△ADC與Rt△ADH中,,
∴△ADC≌△ADH,(HL),
∴AH=AC=24,
∴BH=30-24=6,
在Rt△BDH中,,
解得:,
∴△ABD的面積;
故選擇:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1在△ABC中,∠ACB=90°,AC=BC,直線(xiàn)MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)求證:①△ADC≌△CEB;②DE=AD+BE.
(2)當(dāng)直線(xiàn)MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),DE、AD、BE又怎樣的關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PC=PD,QC=QD,PQ,CD相交于點(diǎn)E.求證:PQ⊥CD.
(數(shù)學(xué)思考)
已知三個(gè)點(diǎn)A,B和C,只允許用圓規(guī)作點(diǎn)D,使得C,D兩點(diǎn)關(guān)于AB所在的直線(xiàn)對(duì)稱(chēng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長(zhǎng)度都與OE相等,則最多能添加這樣的鋼管( )根.
A. 2 B. 4 C. 5 D. 無(wú)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線(xiàn)BC下方拋物線(xiàn)上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,∠B<∠C,AD,AE分別是△ABC的高和角平分線(xiàn),
(1)若∠B=30°,∠C=50°.則∠DAE的度數(shù)是 .(直接寫(xiě)出答案)
(2)寫(xiě)出∠DAE、∠B、∠C的數(shù)量關(guān)系: ,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(﹣2,0),點(diǎn)A的坐標(biāo)為(﹣6,3),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1) ;
(2);
(3) ;
(4);
(5);
(6);
(7);
(8);
(9);
(10);
(11)20032;
(12);
(13);
(14);
(15).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com