【題目】若(a2+b2)(a2+b2+3)=10,則a2+b2_____

【答案】2

【解析】

設(shè)ta2+b2,則由原方程得到關(guān)于t的一元二次方程,通過解該方程求得ta2+b2的值.注意t是非負(fù)數(shù).

解:設(shè)ta2+b2,(t≥0)則

tt+3)=10,

整理,得

t+5)(t2)=0,

解得 t2t=﹣5(舍去).

a2+b2的值為2

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x<0,y>0時,則x,x+y,x﹣y,y中最小的數(shù)是(
A.x
B.x﹣y
C.x+y
D.y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖11.3-11,已知DB⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=130°,則∠DGF=________.
A.130°
B.150°
C.100°
D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點E在AC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.

(1)請直接寫出線段AF,AE的數(shù)量關(guān)系

(2)將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初步探究

如圖①,過點P的兩條直線分別與⊙O相切于點,與⊙O相交于B、C兩點,且AC恰好經(jīng)過圓心O.求證△PAB∽△PCA.

進(jìn)一步探究

如圖②若其他條件不變,但AC不經(jīng)過圓心O.上述結(jié)論是否成立?請說明理由.

嘗試應(yīng)用

如圖③,PA=3,PB,⊙O的半徑為2,請直接寫出直線PC上一點與圓心O的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】n是一個正整數(shù),則10n表示的是( 。

A. 10n相乘所得的結(jié)果B. n10相乘所得的結(jié)果

C. 10后面有n0的數(shù)D. 是一個n位整數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,與x2y是同類項的是(  )

A. xy2B. 2xyC. x2yD. 3x2y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好治理某湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買臺污水處理設(shè)備.現(xiàn)有,兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表.經(jīng)調(diào)查:購買一臺型設(shè)備比購買一臺型設(shè)備多萬元,購買型設(shè)備比購買型設(shè)備少萬元.

價格(萬元/臺)

處理污水量(噸/月)

)求,的值.

)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過萬元,你認(rèn)為該公司有哪幾種購買方案.

)在()問的條件下,若每月要求處理該湖的污水量不低于噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商店購進(jìn)一種商品進(jìn)行銷售,進(jìn)價為每件40元,售價為每件60元,每月可賣出300件.市場調(diào)查反映:調(diào)整價格時,售價每漲1元每月要少賣10件;售價每下降1元每月要多賣20件.為了獲得更大的利潤,現(xiàn)將商品售價調(diào)整為60+x(元/件)(x>0即售價上漲,x<0即售價下降),每月商品銷量為y(件),月利潤為w(元).

1)直接寫出yx之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售價格是多少時才能使月利潤最大?最大月利潤時多少?

查看答案和解析>>

同步練習(xí)冊答案