【題目】如圖,等邊三角形ABC的邊長為4,頂點B與原點O重合,點C在x軸的正半軸上,過點B作BA1⊥AC于點A1,過點A1作A1B1∥OA,交OC于點B1;過點B1作B1A2⊥AC于點A2,過點A2作A2B2∥OA,交OC于點B2;……,按此規(guī)律進行下去,點A2020的縱坐標是_______
【答案】
【解析】
根據(jù)△ABC是等邊三角形,得到AB=AC=BC=4,∠ABC=∠A=∠ACB=60°,解直角三角形得到A(2,),C(4,0),根據(jù)等腰三角形的性質(zhì)得到AA1=A1C,根據(jù)中點坐標公式得到A1(3,),推出△A1B1C是等邊三角形,得到A2是A1C的中點,求得A2(,),推出An(,),即可得到結(jié)論.
∵△ABC是等邊三角形,
∴AB=AC=BC=4,∠ABC=∠A=∠ACB=60°,
∴A(2,),C(4,0),
∵BA1⊥AC,
∴AA1=A1C,
∴A1(3,),
∵A1B1∥OA,
∴∠A1B1C=∠ABC=60°,
∴△A1B1C是等邊三角形,
∴A2是A1C的中點,
∴A2(,),
同理A3(,),
…
∴An(,)
∴A2020的縱坐標是,
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,DE⊥BC,AB⊥BC,求證:∠A=∠3.
證明:∵ DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°( )
∴DE∥AB(_________ ___)
∴∠2=____ (__________ ___________)
∠1= (____________ _________)
又∵∠1=∠2(_____________________)
∴∠A=∠3(_____________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點P和Q,設運動時間為t(s)(0<t<4).
(1)連結(jié)EF、DQ,若四邊形EQDF為平行四邊形,求t的值;
(2)連結(jié)EP,設△EPC的面積為ycm2,求y與t的函數(shù)關(guān)系式,并求y的最大值;
(3)若△EPQ與△ADC相似,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,直線y=x+1與雙曲線的一個交點為P(m,6).
(1)求k的值;
(2)M(2,a),N(n,b)分別是該雙曲線上的兩點,直接寫出當a>b時,n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在口ABCD中,AE⊥BC于點E,AF⊥CD于點F,且AE=3cm,AF=5cm.若口ABCD的周長為32cm,則口ABCD的面積為( )
A. 24cm2B. 30cm2C. 64cm2D. 108cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC(AC<AB<BC),請用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)在邊BC上確定一點P,使得PA+PC=BC;
(2)作出一個△DEF,使得:①△DEF是直角三角形;②△DEF的周長等于邊BC的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:解分式不等式<0
解:根據(jù)實數(shù)的除法法則:同號兩數(shù)相除得正數(shù),異號兩數(shù)相除得負數(shù),因此,原不等式可轉(zhuǎn)化為:
①或②
解①得:無解,解②得:﹣2<x<1
所以原不等式的解集是﹣2<x<1
請仿照上述方法解下列分式不等式:(1)>0;(2)<0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形的邊長是1米;
(1)若設圖中最大正方形的邊長是米,請用含的代數(shù)式分別表示出正方形的邊長
(2)觀察圖形的特點可知,長方形相對的兩邊是相等的(即, )請根據(jù)以上結(jié)論,求出的值
(3)現(xiàn)沿著長方形廣場的四條邊鋪設下水管道,由甲、乙工程隊單獨鋪設分別需要10天、15天完成,如果兩隊從同一位置開始,沿相反的方向同時施工2天后,因甲隊另有任務,余下的工程由乙隊單獨施工,還要多少天完成?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com