【題目】如圖,是線段上--動(dòng)點(diǎn),以為直徑作半圓,過(guò)點(diǎn)作交半圓于點(diǎn),連接.已知,設(shè)兩點(diǎn)間的距離為,的面積為.(當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),的值為)請(qǐng)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行探究. (注: 本題所有數(shù)值均保留一位小數(shù))
通過(guò)畫圖、測(cè)量、計(jì)算,得到了與的幾組值,如下表:
補(bǔ)全表格中的數(shù)值: ; ; .
根據(jù)表中數(shù)值,繼續(xù)描出中剩余的三個(gè)點(diǎn),畫出該函數(shù)的圖象并寫出這個(gè)函數(shù)的一條性質(zhì);
結(jié)合函數(shù)圖象,直接寫出當(dāng)的面積等于時(shí),的長(zhǎng)度約為___ _.
【答案】(1)3.1,9.3,7.3;(2)見(jiàn)解析;(3)或.
【解析】
D
(1)如圖1,當(dāng)x=1.5時(shí),點(diǎn)C在C處,x=2.0時(shí),點(diǎn)C在C1處,此時(shí),D 'C'=DC,則,同理可求b、c;
(2)依據(jù)表格數(shù)據(jù)描點(diǎn)即可;
(3)從圖象可以得出答案.
解:如圖當(dāng)x=1.5時(shí),點(diǎn)C在C處,x=2.0時(shí),點(diǎn)C在C1處
∴D 'C'=DC
∴
同理可得:b=9.3,c=7.3
∴ ( 允許合理的誤差存在)
如圖
由函數(shù)圖像可知,當(dāng)時(shí),隨增大而增大,當(dāng)時(shí),隨增大而減小;當(dāng)時(shí),的最大值為.
由函數(shù)圖像可知,或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩地相距,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離地的距離與時(shí)間的關(guān)系,結(jié)合圖象,下列結(jié)論錯(cuò)誤的是( )
A.是表示甲離地的距離與時(shí)間關(guān)系的圖象
B.乙的速度是
C.兩人相遇時(shí)間在
D.當(dāng)甲到達(dá)終點(diǎn)時(shí)乙距離終點(diǎn)還有
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).
(1)求這條拋物線的表達(dá)式;
(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自行車因其便捷環(huán)保深受人們喜愛(ài),成為日常短途代步與健身運(yùn)動(dòng)首選.如圖1是某品牌自行車的實(shí)物圖,圖2是它的簡(jiǎn)化示意圖.經(jīng)測(cè)量,車輪的直徑為,中軸軸心到地面的距離為,后輪中心與中軸軸心連線與車架中立管所成夾角,后輪切地面于點(diǎn).為了使得車座到地面的距離為,應(yīng)當(dāng)將車架中立管的長(zhǎng)設(shè)置為_____________.
(參考數(shù)據(jù):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片中,,.現(xiàn)將紙片折疊,折痕與矩形、邊的交點(diǎn)分別為、.折疊后點(diǎn)的對(duì)應(yīng)點(diǎn)始終在邊上.若折痕始終與邊,有交點(diǎn),則點(diǎn)運(yùn)動(dòng)的最大距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知中,,,點(diǎn)在邊的延長(zhǎng)線上,且.
(1)求的度數(shù);
(2)如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)()得到.
①若,與相交于點(diǎn),求的長(zhǎng)度;
②連接,,若旋轉(zhuǎn)過(guò)程中時(shí),求滿足條件的的度數(shù).
(3)如圖3,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)()得到,若點(diǎn)為的中點(diǎn),點(diǎn)為線段上任意一點(diǎn),直接寫出旋轉(zhuǎn)過(guò)程中,線段長(zhǎng)度的取值范圍為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線交x軸于A、B兩點(diǎn),交y軸于C點(diǎn),A點(diǎn)坐標(biāo)為(﹣1,0),OC=2,OB=3,點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)P為坐標(biāo)平面內(nèi)一點(diǎn),以B、C、D、P為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)坐標(biāo);
(3)若拋物線上有且僅有三個(gè)點(diǎn)M1、M2、M3使得△M1BC、△M2BC、△M3BC的面積均為定值S,求出定值S及M1、M2、M3這三個(gè)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】受新型冠狀病毒肺炎影響,學(xué)校開(kāi)學(xué)時(shí)間延遲,為了保證學(xué)生停課不停學(xué),某校開(kāi)始實(shí)施網(wǎng)上教學(xué),張老師統(tǒng)計(jì)了本班學(xué)生一周網(wǎng)上上課的時(shí)間(單位:分鐘)如下:200,180,150,200,250.關(guān)于這組數(shù)據(jù),下列說(shuō)法正確的是( )
A.中位數(shù)是200B.眾數(shù)是150C.平均數(shù)是190D.方差為0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com