【題目】如圖,已知在ABC中,∠ABC=65°,AB=AC,BAD=20°,AD=AE,求∠EDC的度數(shù).

【答案】EDC=10°

【解析】

根據(jù)△ABC為等腰三角形以及∠ABC的度數(shù)求出∠C和∠BAC的度數(shù),根據(jù)∠BAD的度數(shù)得出∠DAE的度數(shù),根據(jù)△ADE為等腰三角形求出∠AED的度數(shù),最后根據(jù)△CDE的外角的性質(zhì)求出∠EDC的度數(shù).

∵∠ABC=65°,AB=AC∴∠B=C=65°(等邊對(duì)等角)

∴∠BAC=180°-65°-65°=50°(三角形內(nèi)角和180°)又∵∠BAD=20°

∴∠DAE=BAC-BAD=30°又∵AD=AE∴∠ADE=AED(等邊對(duì)等角)

∴∠ADE=AED=(180°-DAE)÷2=75°(三角形內(nèi)角和180°)

∵∠AED=EDC+C(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和)

∴∠EDC=75°-65°=10°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長(zhǎng)為( )

A. B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在5×4正方形網(wǎng)格中,有A,B,C三個(gè)格點(diǎn)(線與線的交點(diǎn)).

(1)若小正方形邊長(zhǎng)為1,則AC= , AB=
(2)在圖中再找出一個(gè)格點(diǎn)D,滿足:D與A,B,C三點(diǎn)中的兩點(diǎn)組成的三角形恰好與△ABC相似:∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的解析式為y=ax2+bx+c(a、b、c為常數(shù),a≠0),且a2+ab+ac<0,下列說(shuō)法:
①b2﹣4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有兩個(gè)不同根x1、x2 , 且(x1﹣1)(1﹣x2)>0;
④二次函數(shù)的圖象與坐標(biāo)軸有三個(gè)不同交點(diǎn),
其中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】飛機(jī)著陸后滑行的距離S(單位:m)關(guān)于滑行時(shí)間t(單位:s)的函數(shù)解析式是:S=60t﹣1.5t2
(1)直接指出飛機(jī)著陸時(shí)的速度;
(2)直接指出t的取值范圍;
(3)畫出函數(shù)S的圖象并指出飛機(jī)著陸后滑行多遠(yuǎn)才能停下來(lái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古埃及人曾經(jīng)用如圖所示的方法畫直角:把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié)間距、4個(gè)結(jié)間距、5個(gè)結(jié)間距的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角,這樣做的道理是( 。

A. 直角三角形兩個(gè)銳角互補(bǔ)

B. 三角形內(nèi)角和等于180°

C. 如果三角形兩條邊長(zhǎng)的平方和等于第三邊長(zhǎng)的平方

D. 如果三角形兩條邊長(zhǎng)的平方和等于第三邊長(zhǎng)的平方,那么這個(gè)三角形是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C=90°,AC=8,BC=3,線段PQ=AB,P、Q兩點(diǎn)分別在AC和過(guò)點(diǎn)A且垂直于AC的射線AX上運(yùn)動(dòng),問(wèn)P點(diǎn)運(yùn)動(dòng)到AP=_________時(shí),才能使ΔABC與ΔAPQ 全等。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是等邊ABC內(nèi)一點(diǎn).將BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°ADC,連接OD.已知AOB=110°

1)求證:COD是等邊三角形;

2)當(dāng)α=150°時(shí),試判斷AOD的形狀,并說(shuō)明理由;

3)探究:當(dāng)α為多少度時(shí),AOD是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案