【題目】閱讀下面的情景對話,然后解答問題:
老師:我們定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小華:等邊三角形一定是奇異三角形!
小明:那直角三角形中是否存在奇異三角形呢?
問題(1):根據“奇異三角形”的定義,請你判斷小華提出的猜想:“等邊三角形一定是奇異三角形”是否正確?__________.(填“是”或“否”)
問題(2):已知RtΔABC中,兩邊長分別是,10,,若這個三角形是奇異三角形,則第三邊是__________.
問題(3):如圖,以AB為斜邊分別在AB的兩側作直角三角形,且AD=BD,若四邊形ADBC內存在點E,使得AE=AD,CB=CE.試說明:△ACE是奇異三角形.
【答案】(1)是;(2)5;(3)見解析
【解析】
問題(1)根據題中所給的奇異三角形的定義直接進行判斷即可.
問題(2)分c是斜邊和b是斜邊兩種情況,再根據勾股定理判斷出所給的三角形是否符合奇異三角形的定義.
問題(3)利用勾股定理得AC2+BC2=AB2,AD2+BD2=AB2,由AD=BD,則AD=BD,所以2AD2=AB2,加上AE=AD,CB=CE,所以AC2+CE2=2AE2,然后根據新定義即可判斷△ACE是奇異三角形.
(1)解:設等邊三角形的一邊為a,則a2+a2=2a2,
∴符合奇異三角形”的定義.
∴“等邊三角形一定是奇異三角形”正確;
故答案為:是.
(2)解:①當10為斜邊時,另一條直角邊==5,
∴()2+()2≠2×102(或()2+102≠2×()2),
∴Rt△ABC不是奇異三角形.
②當,10是直角邊時,斜邊==5,
∵()2+(5)2=200
∴2×102=200
∴(5)2+(5)2=2×102
∴Rt△ABC是奇異三角形.
故答案為5.
(3)證明:∵∠ACB=∠ADB=90°,
∴AC2+BC2=AB2,AD2+BD2=AB2,
∵AD=BD,
∴2AD2=AB2,
∵AE=AD,CB=CE,
∴AC2+CE2=2AE2,
∴△ACE是奇異三角形.
科目:初中數學 來源: 題型:
【題目】在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網格平面內作出平面直角坐標系;
(2)寫出點B的坐標;
(3)將△ABC向右平移5個單位長度,向下平移2個單位長度,畫出平移后的圖形△A′B′C′;
(4)計算△A′B′C′的面積﹒
(5)在x軸上存在一點P,使PA+PC最小,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊三角形 ABC 的邊長為 3,過點 B 的直線 l⊥AB,且△ABC 與△A′BC′關于直線 l 對稱,D 為線段 BC′上一動點,則 AD+CD 的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,兩條對角線相交于點O,AE平分∠BAD交于BC邊上的中點E,連接OE.下列結論:①∠ACB=30°;②OE⊥BC;③OE=BC;④S△ACE=SABCD.其中正確的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請?zhí)砑右粋條件使矩形ABCD為正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角ΔABC中,已知AB=AC,D為底邊BC上的一點,E為線段AD上的一點,且∠BED=∠BAC=2∠DEC,連接CE.
(1)求證:∠ABE=∠DAC
(2)若∠BAC=60°,試判斷BD與CD有怎樣的數量關系,并證明你的結論;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某市九年級學生學業(yè)考試體育成績,現從中隨機抽取部分學生的體育成績進行分段(A:50分;B:49~45分;C:44~40分;D:39~30分;E:29~0分)統(tǒng)計如下:根據上面提供的信息,回答下列問題:
(1)a的值為_ _,b的值為 _ _,并將統(tǒng)計圖補充完整.
(2)甲同學說:“我的體育成績是此次抽樣調查所得數據的中位數.”甲同學的體育成績應在什么分數段內?
(3)若成績在40分以上(含40分))為優(yōu)秀,估計該市今年10440名九年級學生中體育成績?yōu)閮?yōu)秀的學生的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖可以自由轉動的轉盤被等分,指針落在每個扇形內的機會均等.
現隨機轉動轉盤一次,停止后,指針指向數字的概率為________;
小明和小華利用這個轉盤做游戲,若采用下列游戲規(guī)則,你認為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com