【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)寫出點(diǎn)B的坐標(biāo);
(3)將△ABC向右平移5個(gè)單位長(zhǎng)度,向下平移2個(gè)單位長(zhǎng)度,畫出平移后的圖形△A′B′C′;
(4)計(jì)算△A′B′C′的面積﹒
(5)在x軸上存在一點(diǎn)P,使PA+PC最小,直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)詳見解析;(2)B(-2,1);(3)詳見解析;(4)4;(5)P(,0).
【解析】
(1)直接利用已知點(diǎn)位置得出x,y軸的位置;
(2)利用平面直角坐標(biāo)系得出B點(diǎn)坐標(biāo)即可;
(3)直接利用平移的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;
(4)利用△A′B′C′所在矩形形面積減去周圍三角形面積進(jìn)而得出答案.
(5)作C關(guān)于x軸的對(duì)稱點(diǎn)D,連接AD交x軸一點(diǎn)就為所求點(diǎn).
(1)如圖所示,∵點(diǎn)A的坐標(biāo)為(﹣4,5),
∴在A點(diǎn)y軸向右平移4個(gè)單位,x軸向下平移5個(gè)單位得到即可;
(2)B(﹣2,1);
(3)如圖所示:△A′B′C′即為所求;
(4)△A′B′C′的面積為:3×4﹣×3×2﹣×1×2﹣×2×4=4.
(5)作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)D(-1,-3),連接AD交x軸于一點(diǎn),該點(diǎn)為所求點(diǎn).
設(shè)直線AD:y=kx+b,將A(-4,5),D(-1,-3)代入
解得:
直線AD:
令y=0,則x=
∴P點(diǎn)坐標(biāo)為(,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點(diǎn)D在邊BC 上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長(zhǎng)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分9分)
根據(jù)要求,解答下列問(wèn)題.
(1)根據(jù)要求,解答下列問(wèn)題.
①方程x2-2x+1=0的解為________________________;
②方程x2-3x+2=0的解為________________________;
③方程x2-4x+3=0的解為________________________;
…… ……
(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:
①方程x2-9x+8=0的解為________________________;
②關(guān)于x的方程________________________的解為x1=1,x2=n.
(3)請(qǐng)用配方法解方程x2-9x+8=0,以驗(yàn)證猜想結(jié)論的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三個(gè)登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動(dòng).
(1)1月1日甲與乙同時(shí)開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達(dá)頂峰.求甲的平均攀登速度是每分鐘多少米?
(2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問(wèn)中的速度不變,比丙晚出發(fā)0.5小時(shí),結(jié)果兩人同時(shí)到達(dá)頂峰,問(wèn)甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程,解應(yīng)用題
甲乙兩人相約周末到影院看電影,他們的家分別距離影院1200米和2000米,兩人分別從家中同時(shí)出發(fā),已知甲和乙的速度比是,結(jié)果甲比乙提前4分鐘到達(dá)影院.
(1)求甲、乙兩人的速度?
(2)在看電影時(shí),甲突然接到家長(zhǎng)電話讓其15分鐘內(nèi)趕回家,時(shí)間緊迫改變速度,比來(lái)時(shí)每分鐘多走25米,甲是否能按要求時(shí)間到家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)春市對(duì)全市各類(A型、B型、C型.其它型)校車共848輛進(jìn)行環(huán)保達(dá)標(biāo)普查,普查結(jié)果繪制成如下條形統(tǒng)計(jì)圖:
(1)求全市各類環(huán)保不達(dá)標(biāo)校車的總數(shù);
(2)求全市848輛校車中環(huán)保不達(dá)標(biāo)校車的百分比;
(3)規(guī)定環(huán)保不達(dá)標(biāo)校車必須進(jìn)行維修,費(fèi)用為:A型500元/輛,B型1000元/輛,C型600元/輛,其它型300元/輛,求全市需要進(jìn)行維修的環(huán)保不達(dá)標(biāo)校車維修費(fèi)的總和;
(4)若每輛校車乘坐40名學(xué)生,那么一次性維修全部不達(dá)標(biāo)校車將會(huì)影響全市80000名學(xué)生乘校車上學(xué)的百分比是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,給出如下定義:已知兩個(gè)函數(shù),如果對(duì)于任意的自變量x,這兩個(gè)函數(shù)對(duì)應(yīng)的函數(shù)值記為y1、y2,都有點(diǎn)(x,y1)和(x,y2)關(guān)于點(diǎn)(x,x)中心對(duì)稱(包括三個(gè)點(diǎn)重合時(shí)),由于對(duì)稱中心都在直線y=x上,所以稱這兩個(gè)函數(shù)為關(guān)于直線y=x的特別對(duì)稱函數(shù).例如:y=x和y=為關(guān)于直線y=x的特別對(duì)稱函數(shù).
(1)若y=3x+2和y=kx+t(k≠0)為關(guān)于直線y=x的特別對(duì)稱函數(shù),點(diǎn)M(1,m)是y=3x+2上一點(diǎn).
①點(diǎn)M(1,m)關(guān)于點(diǎn)(1,1)中心對(duì)稱的點(diǎn)坐標(biāo)為 .
②求k、t的值.
(2)若y=3x+n和它的特別對(duì)稱函數(shù)的圖象與y軸圍成的三角形面積為2,求n的值.
(3)若二次函數(shù)y=ax2+bx+c和y=x2+d為關(guān)于直線y=x的特別對(duì)稱函數(shù).
①直接寫出a、b的值.
②已知點(diǎn)P(﹣3,1)、點(diǎn)Q(2,1),連結(jié)PQ,直接寫出y=ax2+bx+c和y=x2+d兩條拋物線與線段PQ恰好有兩個(gè)交點(diǎn)時(shí)d的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,的垂直平分線交于點(diǎn),交于點(diǎn),且,添加一個(gè)條件,能證明四邊形為正方形的是________.
①; ②; ③; ④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的情景對(duì)話,然后解答問(wèn)題:
老師:我們定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小華:等邊三角形一定是奇異三角形!
小明:那直角三角形中是否存在奇異三角形呢?
問(wèn)題(1):根據(jù)“奇異三角形”的定義,請(qǐng)你判斷小華提出的猜想:“等邊三角形一定是奇異三角形”是否正確?__________.(填“是”或“否”)
問(wèn)題(2):已知RtΔABC中,兩邊長(zhǎng)分別是,10,,若這個(gè)三角形是奇異三角形,則第三邊是__________.
問(wèn)題(3):如圖,以AB為斜邊分別在AB的兩側(cè)作直角三角形,且AD=BD,若四邊形ADBC內(nèi)存在點(diǎn)E,使得AE=AD,CB=CE.試說(shuō)明:△ACE是奇異三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com