【題目】為了豐富學(xué)生的校園文化生活,學(xué)校開設(shè)了書法、體育、美術(shù)音樂(lè)共四門選修課程.為了合理的分配教室,教務(wù)處問(wèn)卷調(diào)查了部分學(xué)生,并將了解的情況繪制成如下不完整的統(tǒng)計(jì)圖:

1)參與問(wèn)卷調(diào)查的共有________人,其中選修美術(shù)的有________人,選修體育的學(xué)生人數(shù)對(duì)應(yīng)扇形統(tǒng)計(jì)圖中圓心角的度數(shù)為________.

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若每人必須選修一門課程,且只能選一門,已知小紅沒(méi)有選體育,小剛沒(méi)有選修書法和美術(shù),則他們選修同一門課程的概率是多少,列樹狀圖或列表法求解.

【答案】(1)60,12,108°;(2)詳見解析;(3)

【解析】

1)用參與了解的音樂(lè)的學(xué)生數(shù)除以所占的百分比即可求得調(diào)查的總?cè)藬?shù);用總?cè)藬?shù)減去書法的人數(shù)減去體育和音樂(lè)的人數(shù)就可得到美術(shù)的人數(shù);用選修體育的人數(shù)除以總?cè)藬?shù)再乘以360°即可求出對(duì)應(yīng)扇形的圓心角;.

2)根據(jù)選修課程的人數(shù)補(bǔ)全條形統(tǒng)計(jì)圖即可;.

3)列表或樹狀圖將所有等可能的結(jié)果列舉出來(lái)后利用概率公式求解即可.

(1) 由條形統(tǒng)計(jì)圖可知音樂(lè)有人,由扇形統(tǒng)計(jì)圖可知音樂(lè)占(人);

選修美術(shù)的人數(shù):();

選修體育的圓心角:

(2) 條形統(tǒng)計(jì)圖如圖,

(3) 樹狀圖如下:

由樹狀圖可知,共有6種等可能情況,其中小紅和小剛選修同一門課程的情況有1種,所以概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E、F分別為邊ABCD的中點(diǎn),BD是平行四邊形ABCD的對(duì)角線,AGBDCB的延長(zhǎng)線于點(diǎn)G

1)求證:四邊形BEDF是平行四邊形;

2)若AEDE,則四邊形AGBD是什么特殊四邊形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、AC分別是O的直徑和弦,ODAC于點(diǎn)D.過(guò)點(diǎn)A作O的切線與

OD的延長(zhǎng)線交于點(diǎn)P,PC、AB的延長(zhǎng)線交于點(diǎn)F.

(1)求證:PC是O的切線;

(2)若ABC=60°,AB=10,求線段CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB5BC8,點(diǎn)PAB上,AP1.將矩形ABCD沿CP折疊,點(diǎn)B落在點(diǎn)B'處.B'P、BC分別與AD交于點(diǎn)E、F,則EF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】換個(gè)角度看問(wèn)題.

(原題重現(xiàn))

一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為xh),兩車之間的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系.

……

若第二列快車也從甲地出發(fā)駛往乙地,速度與第一列快車相同.在第一列快車與慢車相遇30分鐘后,第二列快車與慢車相遇.求第二列快車比第一列快車晚出發(fā)多少小時(shí)?

(問(wèn)題再研)

若設(shè)慢車行駛的時(shí)間為xh),慢車與甲地的距離為s1km),第一列快車與甲地的距離為s2km),第二列快車與甲地的距離為s3km),根據(jù)原題中所給信息解決下列問(wèn)題:

1)在同一直角坐標(biāo)系中,分別畫出s1、s2x之間的函數(shù)圖象;

2)求s3x之間的函數(shù)表達(dá)式;

3)求原題的答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線ACBD交于點(diǎn)O,DE平分∠ADCAB于點(diǎn)E,∠BCD=60°,AD=AB,連接OE.下列結(jié)論:①SABCD=ADBD;②DB平分∠CDE;③AO=DE;④SADE=5SOFE,其中正確的結(jié)論是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax+22+cx軸交于AB兩點(diǎn),與y軸負(fù)半軸交于點(diǎn)C,已知點(diǎn)A-1,0),OB=OC

1)求此拋物線的解析式;

2)若把拋物線與直線y=-x-4的交點(diǎn)稱為拋物線的不動(dòng)點(diǎn),若將此拋物線平移,使其頂點(diǎn)為(m2m),當(dāng)m滿足什么條件時(shí),平移后的拋物線總有不動(dòng)點(diǎn);

3Q為直線y=-x-4上一點(diǎn),在此拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得∠APB=2AQB,且這樣的Q點(diǎn)有且只有一個(gè)?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,且∠ACB90°.

1)請(qǐng)用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):

以點(diǎn)A為圓心,BC邊的長(zhǎng)為半徑作A

以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC

2)請(qǐng)判斷直線BDA的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,⊙ORtABC的內(nèi)切圓,切點(diǎn)為D、E、F.

1)求證:四邊形OECF是正方形;

2)若AF10,BE3,求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案