【題目】如圖,已知點(diǎn)C1,0),直線y=-x+7與兩坐標(biāo)軸分別交于A,B兩點(diǎn),D,E分別是AB, OA上的動(dòng)點(diǎn),則CDE周長(zhǎng)的最小值是_____________.

【答案】10

【解析】

點(diǎn)C關(guān)于OA的對(duì)稱點(diǎn)C′1,0),點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)為C″,連接C′C″AO交于點(diǎn)E,與AB交于點(diǎn)D,此時(shí)CDE周長(zhǎng)最小,這個(gè)最小值就是線段C′C″,然后求出C″的坐標(biāo)即可解決問(wèn)題.

解:如圖,點(diǎn)C關(guān)于OA的對(duì)稱點(diǎn)C′10),點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)C″,

∵直線AB的解析式為yx7

∴設(shè)直線CC″的解析式為yx+b

代入C10)得:0=1+b,

解得:b=1,

∴直線CC″的解析式為:yx1

聯(lián)立,解得:

∴直線AB與直線CC″的交點(diǎn)坐標(biāo)為K4,3),

KCC″中點(diǎn),

C″7,6),

連接C′C″AO交于點(diǎn)E,與AB交于點(diǎn)D,此時(shí)CDE周長(zhǎng)最小,

CDE的周長(zhǎng)=DEECCDEC′EDDC″C′C″,

故答案為:10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)邊上,,,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC中,AB=AC,D是射線BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B重合),連結(jié)AD,將AD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)∠BAC的度數(shù)得到AE,連結(jié)DECE.

1)當(dāng)點(diǎn)D在邊BC上,求證:△BAD≌△CAE.

2)當(dāng)點(diǎn)D在邊BC上,若∠BAC=a,求∠DCE的大。(用含a的代數(shù)式表示).

3)當(dāng)DE與△ABC的邊所在的直線垂直,且∠BAC=40°時(shí),請(qǐng)借助圖②,直接寫(xiě)出∠CED的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)派遣三艘海監(jiān)船在南海保護(hù)中國(guó)漁民不受菲律賓的侵犯.在雷達(dá)顯示圖上,標(biāo)明了三艘海監(jiān)船的坐標(biāo)為、,(單位:海里)三艘海監(jiān)船安裝有相同的探測(cè)雷達(dá),雷達(dá)的有效探測(cè)范圍是半徑為的圓形區(qū)域(只考慮在海平面上的探測(cè)).

若在三艘海監(jiān)船組成的區(qū)域內(nèi)沒(méi)有探測(cè)盲點(diǎn),則雷達(dá)的有效探測(cè)半徑至少為________海里;

某時(shí)刻海面上出現(xiàn)一艘菲律賓海警船,在海監(jiān)船測(cè)得點(diǎn)位于南偏東方向上,同時(shí)在海監(jiān)船測(cè)得位于北偏東方向上,海警船正以每小時(shí)海里的速度向正西方向移動(dòng),我海監(jiān)船立刻向北偏東方向運(yùn)動(dòng)進(jìn)行攔截,問(wèn)我海監(jiān)船至少以多少速度才能在此方向上攔截到菲律賓海警船

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,DBC的中點(diǎn),過(guò)點(diǎn)C于點(diǎn)G,過(guò)點(diǎn)B于點(diǎn)B,交CG的延長(zhǎng)線于點(diǎn)F,連接DFAB于點(diǎn)E.

(1)求證:;

(2)求證:AB垂直平分DF;

(3)連接AF,試判斷的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1.

(1)若點(diǎn)A1,3),C2,1), ①建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系;②點(diǎn)B的坐標(biāo)為( , );

(2)判斷ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)的圖象相交于點(diǎn)且點(diǎn)的縱坐標(biāo)為,則關(guān)于的方程的解是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰RtABC中,BAC90°,ABAC,點(diǎn)A、點(diǎn)B分別是y軸、x軸上兩個(gè)動(dòng)點(diǎn),直角邊ACx軸于點(diǎn)D,斜邊BCy軸于點(diǎn)E;

1)如圖(1),已知C點(diǎn)的橫坐標(biāo)為-1,直接寫(xiě)出點(diǎn)A的坐標(biāo);

2)如圖(2), 當(dāng)?shù)妊?/span>RtABC運(yùn)動(dòng)到使點(diǎn)D恰為AC中點(diǎn)時(shí),連接DE,求證:ADBCDE;

(3)如圖(3), 若點(diǎn)Ax軸上,且A-40),點(diǎn)By軸的正半軸上運(yùn)動(dòng)時(shí),分別以OB、AB為直角邊在第一、二象限作等腰直角BOD和等腰直角ABC,連結(jié)CDy軸于點(diǎn)P,問(wèn)當(dāng)點(diǎn)By軸的正半軸上運(yùn)動(dòng)時(shí),BP的長(zhǎng)度是否變化?若變化請(qǐng)說(shuō)明理由,若不變化,請(qǐng)求出BP的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BCE、F兩點(diǎn),連接EFOB于點(diǎn)G.

(1)求四邊形OEBF的面積;

(2)求證:OGBD=EF2;

(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF△COF的面積之和最大時(shí),求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案