【題目】如圖,△ABC,△ADE是等邊三角形,B,C,D在同一直線上.
求證:(1)CE=AC+CD;(2)∠ECD=60°.
【答案】證明見解析
【解析】
(1)根據(jù)△ABC、△ADE都是等邊三角形,得到AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,推出∠BAD=∠CAE,得到△BAD≌△CAE,根據(jù)全等三角形的性質(zhì)得到BD=EC,即可推出答案;
(2)由(1)知:△BAD≌△CAE,根據(jù)平角的意義即可求出∠ECD的度數(shù).
(1)∵△ABC,△ADE是等邊三角形,
∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),
∴BD=EC.∵BD=BC+CD=AC+CD,
∴CE=BD=AC+CD.
(2)由(1)知△BAD≌△CAE,
∴∠ACE=∠ABD=60°,
∴∠ECD=180°-∠ACB-∠ACE=60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1 .
(1)線段OA1的長是 , ∠AOB1的度數(shù)是;
(2)連接AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1的位置所經(jīng)過的路線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線頂點(diǎn)坐標(biāo)為(1,3),且過點(diǎn)A(2,1).
(1)求拋物線解析式;
(2)若拋物線與x軸兩交點(diǎn)分別為點(diǎn)B、C,求線段BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于點(diǎn)E,BE=4,則AC長為( )
A. 2 B. 3 C. 4 D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:如圖①,四邊形 ABCD是正方形,BE⊥BF,BE=BF,求證:△ABE≌△CBF;
方法拓展:如圖②,ABCD是矩形,BC=2AB,BF⊥BE,BF=2BE,若矩形ABCD的面積為40,△ABE的面積為4,求陰影部分圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動(dòng)點(diǎn)D從點(diǎn)A出發(fā)以每秒3個(gè)單位的速度運(yùn)動(dòng)至點(diǎn)B,過點(diǎn)D作DE⊥AB交射線AC于點(diǎn)E.設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)線段AE的長為 . (用含t的代數(shù)式表示)
(2)若△ADE與△ACB的面積比為1:4時(shí),求t的值.
(3)設(shè)△ADE與△ACB重疊部分圖形的周長為L,求L與t之間的函數(shù)關(guān)系式.
(4)當(dāng)直線DE把△ACB分成的兩部分圖形中有一個(gè)是軸對稱圖形時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料并解答下列問題.
你知道嗎?一些代數(shù)恒等式可以用平面圖形的面積來表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用圖甲中的①或②的面積表示.
(1)請寫出圖乙所表示的代數(shù)恒等式;
(2)畫出一個(gè)幾何圖形,使它的面積能表示(a+b)(a+3b)=a2+4ab+3b2;
(3)請仿照上述式子另寫一個(gè)含有a,b的代數(shù)恒等式,并畫出與之對應(yīng)的幾何圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)滿足下列條件,分別求出,的取值范圍.
使得隨增加而減。
使得函數(shù)圖象與軸的交點(diǎn)在軸的上方.
使得函數(shù)圖象經(jīng)過一、三、四象限.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com