【題目】y=x2+(1﹣a)x+1是關(guān)于x的二次函數(shù),當(dāng)x的取值范圍是1≤x≤3時(shí),y在x=1時(shí)取得最大值,則實(shí)數(shù)a的取值范圍是( 。
A. a≤﹣5 B. a≥5 C. a=3 D. a≥3
【答案】B
【解析】分析:由于二次函數(shù)的頂點(diǎn)坐標(biāo)不能確定,故應(yīng)分對(duì)稱軸不在[1,3]和對(duì)稱軸在[1,3]內(nèi)兩種情況進(jìn)行解答.
詳解:第一種情況:
當(dāng)二次函數(shù)的對(duì)稱軸不在1≤x≤3內(nèi)時(shí),此時(shí),對(duì)稱軸一定在1≤x≤3的右邊,函數(shù)方能在這個(gè)區(qū)域取得最大值,
x=>3,即a>7,
第二種情況:
當(dāng)對(duì)稱軸在1≤x≤3內(nèi)時(shí),對(duì)稱軸一定是在區(qū)間1≤x≤3的中點(diǎn)的右邊,因?yàn)槿绻谥悬c(diǎn)的左邊的話,就是在x=3的地方取得最大值,即:
x=≥,即a≥5(此處若a取5的話,函數(shù)就在1和3的地方都取得最大值)
綜合上所述a≥5.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城鎮(zhèn)在對(duì)一項(xiàng)工程招標(biāo)時(shí),接到甲、乙兩個(gè)工程隊(duì)的投標(biāo)書(shū),每施工一天,需付甲隊(duì)工程款2萬(wàn)元,付乙隊(duì)工程款1.5萬(wàn)元.現(xiàn)有三種施工方案:()由甲隊(duì)單獨(dú)完成這項(xiàng)工程,恰好如期完工;()由乙隊(duì)單獨(dú)完成這項(xiàng)工程,比規(guī)定工期多6天;()由甲乙兩隊(duì)后,剩下的由乙隊(duì)單獨(dú)做,也正好能如期完工.小聰同學(xué)設(shè)規(guī)定工期為天,依題意列出方程:.
(1)請(qǐng)將()中被墨水污染的部分補(bǔ)充出來(lái):________;
(2)你認(rèn)為三種施工方案中,哪種方案既能如期完工,又節(jié)省工程款?說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB∥CD,猜想∠BPD與∠B.∠D的關(guān)系,說(shuō)明理由.(提示:三角形的內(nèi)角和等于180°)
①填空或填寫(xiě)理由
解:猜想∠BPD+∠B+∠D=360°
理由:過(guò)點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°______
∵AB∥CD,EF∥AB,
∴______∥_____,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
∴∠EPD+______=180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
②依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B.∠D的關(guān)系,并說(shuō)明理由.
③觀察圖(3)和(4),已知AB∥CD,直接寫(xiě)出圖中的∠BPD與∠B.∠D的關(guān)系,不說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請(qǐng)你估計(jì)總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個(gè)范圍內(nèi)的樣本家庭中任意抽取2個(gè),請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表)求抽取出的2個(gè)家庭來(lái)自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-2,5),B(-3,3),C(1,2),點(diǎn)P(m,n)是三角形ABC內(nèi)任意一點(diǎn),三角形經(jīng)過(guò)平移后得到三角形A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(m+6,n-2).
(1)直接寫(xiě)出平移后點(diǎn)A1、B1、C1的坐標(biāo)分別為 .
(2)畫(huà)出三角形ABC平移后的三角形A1B1C1..
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進(jìn)價(jià);
該商場(chǎng)將購(gòu)進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過(guò)程中發(fā)現(xiàn)甲種商品銷量不好,商場(chǎng)決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問(wèn)甲種商品按原銷售單價(jià)至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O半徑為1,AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC,⊙O外的一點(diǎn)D 在直線AB上.
(1)若AC=,OB=BD.
①求證:CD是⊙O的切線.
②陰影部分的面積是 .(結(jié)果保留π)
(2)當(dāng)點(diǎn)C在⊙O上運(yùn)動(dòng)時(shí),若CD是⊙O的切線,探究∠CDO與∠OAC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在黃金周促銷期間規(guī)定:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的打折出售;同時(shí),當(dāng)顧客在該商場(chǎng)消費(fèi)打折后的金額滿一定數(shù)額,還可按如下方案抵扣相應(yīng)金額:
說(shuō)明:表示在范圍中,可以取到a,不能取到b.
根據(jù)上述促銷方法,顧客在該商場(chǎng)購(gòu)物可以獲得雙重優(yōu)惠:打折優(yōu)惠與抵扣優(yōu)惠.
例如:購(gòu)買(mǎi)標(biāo)價(jià)為900元的商品,則打折后消費(fèi)金額為450元,獲得的抵扣金額為30元,總優(yōu)惠額為:元,實(shí)際付款420元.
購(gòu)買(mǎi)商品得到的優(yōu)惠率,
請(qǐng)問(wèn):
購(gòu)買(mǎi)一件標(biāo)價(jià)為500元的商品,顧客的實(shí)際付款是多少元?
購(gòu)買(mǎi)一件商品,實(shí)際付款375元,那么它的標(biāo)價(jià)為多少元?
請(qǐng)直接寫(xiě)出,當(dāng)顧客購(gòu)買(mǎi)標(biāo)價(jià)為______元的商品,可以得到最高優(yōu)惠率為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線:與直線:相交于點(diǎn),直線、分別交軸于、兩點(diǎn),矩形的頂點(diǎn)、分別在、上,頂點(diǎn)、都在軸上,且點(diǎn)與點(diǎn)重合,那么 __________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com