【題目】受“新冠”疫情影響,全國(guó)中小學(xué)延遲開(kāi)學(xué),很多學(xué)校都開(kāi)展起了“線上教學(xué)”,市場(chǎng)上對(duì)手寫(xiě)板的需求激增.重慶某廠家準(zhǔn)備3月份緊急生產(chǎn)A,B兩種型號(hào)的手寫(xiě)板,若生產(chǎn)20個(gè)A型號(hào)和30個(gè)B型號(hào)手寫(xiě)板,共需要投入36000元;若生產(chǎn)30個(gè)A型號(hào)和20個(gè)B型號(hào)手寫(xiě)板,共需要投入34000元.
(1)請(qǐng)問(wèn)生產(chǎn)A,B兩種型號(hào)手寫(xiě)板,每個(gè)各需要投入多少元的成本?
(2)經(jīng)測(cè)算,生產(chǎn)的A型號(hào)手寫(xiě)板每個(gè)可獲利200元,B型號(hào)手寫(xiě)板每個(gè)可獲利400元,該廠家準(zhǔn)備用10萬(wàn)元資金全部生產(chǎn)這兩種手寫(xiě)板,總獲利w元,設(shè)生產(chǎn)了A型號(hào)手寫(xiě)板a個(gè),求w關(guān)于a的函數(shù)關(guān)系式;
【答案】(1)生產(chǎn)A種型號(hào)的手寫(xiě)板需要投入成本600元,生產(chǎn)B種型號(hào)的手寫(xiě)板需要投入成本800元;(2)
【解析】
(1)根據(jù)生產(chǎn)20個(gè)A型號(hào)和30個(gè)B型號(hào)手寫(xiě)板,共需要投入36000元;若生產(chǎn)30個(gè)A型號(hào)和20個(gè)B型號(hào)手寫(xiě)板,共需要投入34000元,可以列出相應(yīng)的二元一次方程組,從而可以求得生產(chǎn)A,B兩種型號(hào)手寫(xiě)板,每個(gè)各需要投入多少元的成本;
(2)根據(jù)題意和(1)中的結(jié)果可以得到w與a的函數(shù)關(guān)系式.
解:(1)設(shè)生產(chǎn)A種型號(hào)的手寫(xiě)板需要投入成本a元,生產(chǎn)B種型號(hào)的手寫(xiě)板需要投入成本b元,
由題意可得
解得,
答:生產(chǎn)A種型號(hào)的手寫(xiě)板需要投入成本600元,生產(chǎn)B種型號(hào)的手寫(xiě)板需要投入成本800元;
(2)∵該廠家準(zhǔn)備用10萬(wàn)元資金全部生產(chǎn)這兩種手寫(xiě)板,生產(chǎn)了A型號(hào)手寫(xiě)板a個(gè),
∴生產(chǎn)B型號(hào)的手寫(xiě)板的數(shù)量為: (個(gè)),
,
即w關(guān)于a的函數(shù)關(guān)系式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的二次函數(shù)y=x2+2kx+k﹣1,下列說(shuō)法正確的是( 。
A.對(duì)任意實(shí)數(shù)k,函數(shù)圖象與x軸都沒(méi)有交點(diǎn)
B.對(duì)任意實(shí)數(shù)k,函數(shù)圖象沒(méi)有唯一的定點(diǎn)
C.對(duì)任意實(shí)數(shù)k,函數(shù)圖象的頂點(diǎn)在拋物線y=﹣x2﹣x﹣1上運(yùn)動(dòng)
D.對(duì)任意實(shí)數(shù)k,當(dāng)x≥﹣k﹣1時(shí),函數(shù)y的值都隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】投資1萬(wàn)元圍一個(gè)矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長(zhǎng)24 m,平行于墻的邊的費(fèi)用為200元/m,垂直于墻的邊的費(fèi)用為150元/m,設(shè)平行于墻的邊長(zhǎng)為x m.
(1)設(shè)垂直于墻的一邊長(zhǎng)為y m,直接寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)若菜園面積為384 m2,求x的值;
(3)求菜園的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD的兩條對(duì)角線AC、BD互相平分.添加下列條件,一定能判定四邊形ABCD為菱形的是( )
A.∠ABD=∠BDCB.∠ABD=∠BACC.∠ABD=∠CBDD.∠ABD=∠BCA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知半圓⊙O的直徑AB=10,弦CD∥AB,且CD=8,E為弧CD的中點(diǎn),點(diǎn)P在弦CD上,聯(lián)結(jié)PE,過(guò)點(diǎn)E作PE的垂線交弦CD于點(diǎn)G,交射線OB于點(diǎn)F.
(1)當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),求CP的長(zhǎng);
(2)設(shè)CP=x,OF=y,求y與x的函數(shù)關(guān)系式及定義域;
(3)如果GP=GF,求△EPF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要使寬為2米的矩形平板車ABCD通過(guò)寬為2米的等寬的直角通道,平板車的長(zhǎng)不能超過(guò)_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知關(guān)于x的二次函數(shù)y=﹣x2+bx+c(c>0)的圖象與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M.
(1)求出二次函數(shù)的關(guān)系式;
(2)點(diǎn)P為線段MB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PD,垂足為D.若OD=m,△PCD的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍;
(3)探索線段MB上是否存在點(diǎn)P,使得△PCD為直角三角形?如果存在,求出P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸相交于、兩點(diǎn),與軸相交于點(diǎn),且點(diǎn)與點(diǎn)的坐標(biāo)分別為.,點(diǎn)是拋物線的頂點(diǎn).點(diǎn)為線段上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),若.
(1)求二次函數(shù)解析式;
(2)設(shè)的面積為,試判斷有最大值或最小值?若有,求出其最值,若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)在上是否存在點(diǎn),使為直角三角形?若存在,請(qǐng)寫(xiě)出點(diǎn)的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com