【題目】解方程

(1)

(2) x2+4x-21=0

(3)

(4)

【答案】(1)x1=1,x2=2 ;(2)x1=-7,x2=3 ;(3)x1=1,x2=1.5;(4)x1=1+ ,x2=1-

【解析】試題分析:1)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可;
2)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;
3)整理后分解因式,即可得出兩個一元一次方程,求出方程的解即可;

4將方程變形成一般形式,再用公式法求解.

試題解析:

1x2=3x-2,
x2-3x+2=0,
x-2)(x-1=0
x-2=0,x-1=0
x1=,2x2=21;

2x2+4x-21=0,
x+7)(x-3=0,
x+7=0,x-3=0,
x1=-7x2=3;

3)(2x+1)(x-3=-6
整理得:2x2-5x+3=0,
x-1)(2x-3=0,
x-1=0,2x-3=0,
x1=1x2= ;

(4)

4x2-4x+1-4x-2=0

4x2-8x-1=0

x1=2- ,x2=2+

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級甲、乙兩班舉行電腦漢字輸入比賽兩個班能參加比賽的學生每分鐘輸入漢字的個數(shù),經(jīng)統(tǒng)計和計算后結(jié)果如下表

有一位同學根據(jù)上面表格得出如下結(jié)論

①甲、乙兩班學生的平均水平相同;②乙班優(yōu)秀人數(shù)比甲班優(yōu)秀人數(shù)多(每分鐘輸入漢字達150個以上為優(yōu)秀)③甲班學生比賽成績的波動比乙班學生比賽成績的波動大

上述結(jié)論正確的是_______(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作已知點關(guān)于某直線的對稱點的第一步是( 。
A.過已知點作一條直線與已知直線相交
B.過已知點作一條直線與已知直線垂直
C.過已知點作一條直線與已知直線平行
D.不確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2﹣8x﹣1=0配方后可變形為(  )
A.(x+4)2=17
B.(x+4)2=15
C.(x﹣4)2=17
D.(x﹣4)2=15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(-10,0),B(-6,0),點C在y軸的正半軸上,CBO=45°,CDAB,CDA=90°.點P從點Q(8,0)出發(fā),沿x軸向左以每秒1個單位長的速度向點A勻速運動,運動時間為t秒.

(1)求點C的坐標.

(2)當BCP=15°時,求t的值.

(3)以PC為直徑作圓,當該圓與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點E在線段AC上,DAB的延長線上,連接DEBCF,過EEGBCG

1)下列兩個關(guān)系式:①DB=ECDF=EF,請你選擇一個做為條件,另一個做為結(jié)論構(gòu)成一個正確的命題,并給予證明.

你選擇的條件是  ,結(jié)論是  .(只需填序號)

2)在(1)的條件下,求證:FG=BC/2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,O為坐標原點,P是反比例函數(shù)y=x>0圖象上任意一點,以P為圓心,PO為半徑的圓與坐標軸分別交于點A、B.

1求證:線段AB為P的直徑;

2AOB的面積;

3如圖2,Q是反比例函數(shù)y=x>0圖象上異于點P的另一點,以Q為圓心,QO為半徑畫圓與坐標軸分別交于點C、D.求證:DOOC=BOOA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義新運算:對于任意實數(shù)a,b都有:a⊕b=a(a﹣b)+1,其中等式右邊是通常的加法、減法及乘法運算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:ax2﹣ay2= .

查看答案和解析>>

同步練習冊答案