如圖,在等腰梯形ABCD中,ADBC,∠A=2∠B,BC=3,AB=2.求AD的長(zhǎng).
過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,則四邊形AEFD是矩形,
所以AD=EF,BE=FC(1分)
因?yàn)椤螦=2∠B,又∠BAD+∠B=180°,所以∠B=60°(3分)
在Rt△AEB中,因?yàn)椤螧AE=90°-60°=30°,AB=2,
所以BE=
1
2
AB=
1
2
=1
(5分)
所以AD=BC-2BE=3-1×2=1.(7分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,DF⊥AD,交BC于點(diǎn)F.若線段DF上存在點(diǎn)E,使∠EBC=∠EDC,且∠ECB=45°.
(1)猜想:BE與CD有什么數(shù)量關(guān)系和位置關(guān)系,并說明理由.
(2)若DE=3,DF:FC=4,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ABDC,AB=10cm,CD=4cm,點(diǎn)P從點(diǎn)A出發(fā),以1.5cm/秒的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/秒的速度沿CD向終點(diǎn)D運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止),設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒:
(1)當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),PQ把梯形分成兩個(gè)特殊圖形是______、______;
(2)過點(diǎn)D作DE⊥AB,垂足為E,當(dāng)四邊形DEPQ是矩形時(shí),求t的值;
(3)探索:是否存在這樣的t值,使四邊形PBCQ的面積是四邊形APQD面積的2倍?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

以3,5,5,11為邊作梯形,這樣的梯形有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,EA⊥AD,M是AE上一點(diǎn),F(xiàn)、G分別是AB、CM的中點(diǎn),且∠BAE=∠MCE,∠MBE=45°,則給出以下五個(gè)結(jié)論:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述結(jié)論中始終正確的序號(hào)有______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知一個(gè)梯形的兩底長(zhǎng)分別是4和8,一腰長(zhǎng)為5,若另一腰長(zhǎng)為x,則x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,已知ABCD,點(diǎn)E為BC的中點(diǎn),設(shè)△DEA的面積為S1,梯形ABCD的面積為S2,則S1與S2的數(shù)量關(guān)系為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,AB⊥AD,BC=CD,BE⊥CD,垂足為E,點(diǎn)F在BD上,連接AF、EF.
(1)求證:DA=DE;
(2)如果AFCD,求證:四邊形ADEF是菱形.
(3)如果∠C=60°,EC=3,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

梯形中位線長(zhǎng)10,一對(duì)角線把它分成2:3,則梯形較長(zhǎng)的底邊為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案