【題目】如圖,直線AB,CD相交于點O,OF平分∠AOE,OF⊥CD,垂足為O.
(1)寫出圖中所有與∠AOD互補的角;
(2)若∠AOE=120°,求∠BOD的度數(shù).
【答案】
(1)解:∵直線AB,CD相交于點O,
∴∠AOC和∠BOD與∠AOD互補,
∵OF平分∠AOE,
∴∠AOF=∠EOF,
∵OF⊥CD,
∴∠COF=∠DOF=90°,
∴∠DOE=∠ACO,
∴∠DOE也是∠AOD的補角,
∴與∠AOD互補的角有∠AOC,∠BOD,∠DOE
(2)解:∵OF平分∠AOE,
∴∠AOF= ∠AOE=60°,
∵OF⊥CD,
∴∠COF=90°,
∴∠AOC=∠COF﹣∠AOF=90°﹣60°=30°,
∵∠AOC與∠BOD是對頂角,
∴∠BOD=∠AOC=30°
【解析】(1)根據(jù)鄰補角的定義確定出∠AOC和∠BOD,再根據(jù)角平分線的定義可得∠AOF=∠EOF,根據(jù)垂直的定義可得∠COF=∠DOF=90°,然后根據(jù)等角的余角相等求出∠DOE=∠ACO,從而最后得解;(2)根據(jù)角平分線的定義求出∠AOF,再根據(jù)余角的定義求出∠AOC,然后根據(jù)對頂角相等解答.
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=4,AD=3,AE=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,DC∥AB ,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=2時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題是真命題的是( )
A.三點確定一個圓B.平分弦的直徑垂直于弦
C.長度相等的弧是等弧D.對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺“走基層”欄目的一位記者赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.如果汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,那么汽車在鄉(xiāng)村公路上的行駛速度為km/h.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為抑制高房價,照顧低收入家庭,國家決定加大經(jīng)濟保障房建設力度,若某市2017年完成了500萬套,計劃2019年完成2000萬套.則2017年至2019年經(jīng)濟保障房平均每年的增長率為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過兩種不同的方法計算同一個圖形的面積,可以得到一個等式,也可以求出一些不規(guī)則圖形的面積. 例如,由1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如圖2,將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的形式表示這個大正方形的面積,你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來.
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如圖3,將兩個邊長分別為a和b的正方形拼在一起,B,C,G三點在同一直線上,連接BD和BF.若這兩個正方形的邊長滿足a+b=10,ab=20,請求出陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】第五次全國人口普查顯示,某市總?cè)丝跒?63萬人,用科學記數(shù)法表示為( )人.
A.4.63×106
B.4.63×105
C.4.63×102
D.4.63×103
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com