【題目】如圖,拋物線y=(其中m1)與其對稱軸l相交于點(diǎn)P,與y軸相交于點(diǎn)A(0,m).點(diǎn)A關(guān)于直線l的對稱點(diǎn)為B,作BCx軸于點(diǎn)C,連接PC、PB,與拋物線、x軸分別相交于點(diǎn)D、E,連接DE.將PBC沿直線PB翻折,得到PBC′.

(1)該拋物線的解析式為 (用含m的式子表示);

(2)探究線段DE、BC的關(guān)系,并證明你的結(jié)論;

(3)直接寫出C′點(diǎn)的坐標(biāo)(用含m的式子表示).

【答案】(1)y=;(2)DE=BC,理由詳見解析;(3),).

【解析】

試題分析:(1)將點(diǎn)A的坐標(biāo)代入拋物線解析式,即可求出a的值;

(2)根據(jù)拋物線的解析式,求出頂點(diǎn)P的坐標(biāo),根據(jù)對稱軸,求出點(diǎn)B,C的坐標(biāo),根據(jù)待定系數(shù)法求出直線BP、CP的解析式,求出點(diǎn)D、E的坐標(biāo),進(jìn)而求出DE,BC的長度,即可解得;

(3)連接CC′交直線BP于點(diǎn)F,則CC′BP,且CF=C′F,求出CC′的解析式,進(jìn)而求得點(diǎn)F的坐標(biāo),根據(jù)CF=C′F,即可解答.

試題解析:(1)把點(diǎn)A(0,m)代入y=

得:﹣m=m,

am﹣1=0,

am1,

a=

y=,

故答案為:y=;

(2)DE=BC.

理由:又拋物線y=,可得拋物線的頂點(diǎn)坐標(biāo)P(,﹣m),

由l:x=,可得:點(diǎn)B(,m),

點(diǎn)C(,0).

設(shè)直線BP的解析式為y=kx+b,點(diǎn)P(,﹣m)和點(diǎn)B(,m)在這條直線上,

得:,解得:,

直線BP的解析式為:y=3m,

令y=0,3m=0,解得:x=

點(diǎn)D(,0);

設(shè)直線CP的解析式為y=x+,點(diǎn)P(,﹣m)和點(diǎn)C(,0)在這條直線上,

得:,解得:,

直線CP的解析式為:y=2m;

拋物線與直線CP相交于點(diǎn)E,可得:,解得:,(舍去),

點(diǎn)E(,);

,

DEx軸,

DE==,BC==m=2DE,

即DE=BC;

(3)C′(,).

連接CC′,交直線BP于點(diǎn)F,

BC′=BC,C′BF=CBF,

CC′BP,CF=C′F,

設(shè)直線BP的解析式為y=kx+b,點(diǎn)B(,m),P(,﹣m)在直線上,

,解得:,

直線BP的解析式為:y=3m,

CC′BP,

設(shè)直線CC′的解析式為:y=,

,解得:=2m,

聯(lián)立①②,得:,解得:

點(diǎn)F(,),

CF==,

設(shè)點(diǎn)C′的坐標(biāo)為(a,),

C′F==,解得:a=

=,

C′(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,兩條角平分線BDCE相交于點(diǎn)O

(1)證明:△ABD≌△ACE;(2)證明:OB=OC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查市場上某品牌方便面的色素含量是否符合國家標(biāo)準(zhǔn),工作人員在超市里隨機(jī)抽取了某品牌的方便面進(jìn)行檢驗(yàn).圖1和圖2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,其中A、B、C、D分別代表色素含量為0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,圖1的條形圖表示的是抽查的方便面中色素含量分布的袋數(shù),圖2的扇形圖表示的是抽查的方便面中色素的各種含量占抽查總數(shù)的百分比.請解答以下問題:

(1)本次調(diào)查一共抽查了多少袋方便面?
(2)將圖1中色素含量為B的部分補(bǔ)充完整;
(3)圖2中的色素含量為D的方便面所占的百分比是多少?
(4)若色素含量超過0.15%即為不合格產(chǎn)品,某超市這種品牌的方便面共有10000袋,那么其中不合格的產(chǎn)品有多少袋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點(diǎn)D為BC的中點(diǎn),點(diǎn)A在第一象限內(nèi),AB與y軸的正半軸交與點(diǎn)E,已知點(diǎn)B(﹣1,0).

(1)點(diǎn)A的坐標(biāo):      ,點(diǎn)E的坐標(biāo):      ;

(2)若二次函數(shù)y=﹣x2+bx+c過點(diǎn)A、E,求此二次函數(shù)的解析式;

(3)P是線段AC上的一個動點(diǎn)(P與點(diǎn)A、C不重合)連結(jié)PB、PD,設(shè)L是△PBD的周長,當(dāng)L取最小值時。

:①點(diǎn)P的坐標(biāo)

判斷此時點(diǎn)P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),OA=4,AB=6,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.

(1)點(diǎn)B的坐標(biāo)為  ;

(2)當(dāng)點(diǎn)P移動4秒時,請指出點(diǎn)P的位置,并求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光速約為300000千米/秒,用科學(xué)記數(shù)法表示為(
A.3×104千米/秒
B.3×105千米/秒
C.3×106千米/秒
D.30×104千米/秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的箱子里共有3個球,把它們的分別編號為1,2,3,這些球除編號不同外其余都相同,從箱子中隨機(jī)摸出一個球,記錄下編號后將它放回箱子,攪勻后再摸出一個球并記錄下編號.

(1)用樹狀圖或列表法舉出所有可能出現(xiàn)的結(jié)果;

(2)求兩次摸出的球都是編號為3的球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個等腰三角形兩內(nèi)角的度數(shù)之比為1:4,則這個等腰三角形頂角的度數(shù)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),2011年經(jīng)義烏海關(guān)出口小商品總價(jià)達(dá)98.7億美元據(jù)統(tǒng)計(jì),98.7億美元用科學(xué)記數(shù)法表示為( )
A.9.87×107美元
B.9.87×108美元
C.9.87×109美元
D.9.87×1010美元

查看答案和解析>>

同步練習(xí)冊答案