【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關系,并說明理由;
(2)連結CG,求證:四邊形CBEG是正方形.
【答案】(1)FG⊥ED.理由見解析;(2)證明見解析.
【解析】試題分析: (1)根據(jù)旋轉(zhuǎn)和平移可得∠DEB=∠ACB,∠GFE=∠A,再根據(jù)∠ABC=90°可得∠A+∠ACB=90°,進而得到∠DEB+∠GFE=90°,從而得到DE、FG的位置關系是垂直;(2)根據(jù)旋轉(zhuǎn)和平移找出對應線段和角,然后再證明是矩形,后根據(jù)鄰邊相等可得四邊形CBEG是正方形.
試題解析:
(1)解:FG⊥ED.理由如下:
∵△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,∴∠DEB=∠ACB,
∵把△ABC沿射線平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,
∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;
(2)證明:根據(jù)旋轉(zhuǎn)和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,
∵CG∥EB,∴∠BCG=∠CBE=90°,∴四邊形BCGE是矩形,∵CB=BE,
∴四邊形CBEG是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】給出下列命題:
(1)平行四邊形的對角線互相平分;(2)矩形的對角線相等;(3)菱形的對角線互相垂直平分;(4)正方形的對角線相等且互相垂直平分.其中,真命題的個數(shù)是( )
A. 2B. 3C. 4D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=CD.
簡單應用:
(1)在圖①中,若AC=,BC=,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要了解某市九年級學生的視力狀況,從中抽查了500名學生的視力狀況,那么樣本是指( )
A. 某市所有的九年級學生
B. 被抽查的500名九年級學生
C. 某市所有的九年級學生的視力狀況
D. 被抽查的500名學生的視力狀況
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市教育行政部門為了了解七年級學生每學期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校七學生一個學期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了如圖兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中的a的值,并求出該校七年級學生總數(shù);
(2)分別求出活動時問為5天、7天的學生人數(shù),并補全頻數(shù)分布直方圖;
(3)求出扇形統(tǒng)計圖中“活動時間為4天”的扇形所對圓心角的度數(shù);
(4)如果該市共有七年級學生6000人,請你估計“活動時間不小于4天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是( )
A. 27 B. 51 C. 69 D. 72
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com