【題目】如圖,在ABC中,ACB=3B,AB=10,AC=4AD平分BAC,交BC于點(diǎn)D,CEADE,則CE= ______

【答案】3

【解析】

作輔助線來(lái)構(gòu)造全等三角形,將已知邊長(zhǎng)ACAB之間建立聯(lián)系,求得AF、BF,再利用∠ACB和∠B之間的關(guān)系求出CF,從而得到CE的長(zhǎng).

延長(zhǎng)CEABF,

CEAD,

∴∠AEF=AEC=90°,

AD平分∠BAC,

∴∠FAE=CAE,

AEFACE中,


∴△AEF≌△ACE,

AF=AC=4,AFE=ACE,EF=CE,

BF=10-4=6,

∵∠AFC=B+ECD,

∴∠ACF=B+ECD,

∴∠ACB=2ECD+B,

∵∠ACB=3B,

2ECD+B=3B,

∴∠B=ECD,
CF=BF=6,
CE=CF=3.
故答案為:3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王剪了兩張直角三角形紙片,進(jìn)行了如下的操作:

操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)AB重合,折痕為DE

1)如果AC=6cm,BC=8cm,可求得△ACD的周長(zhǎng)為

2)如果∠CAD∠BAD=47,可求得∠B的度數(shù)為

操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請(qǐng)求出CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按照下列要求畫圖并填空:

1)畫出邊的高,垂足為,則點(diǎn)到直線的距離是線段______的長(zhǎng).

2)用直尺和圓規(guī)作出的邊的垂直平分線,分別交直線于點(diǎn)、,聯(lián)結(jié),則線段______(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】結(jié)合愛市西,愛生活,會(huì)創(chuàng)新的主題,某同學(xué)設(shè)計(jì)了一款地面霓虹探測(cè)燈,增加美觀的同時(shí)也為行人的夜間行路帶去了方便.他的構(gòu)想如下:在平面內(nèi),如圖1所示,燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈轉(zhuǎn)動(dòng)的速度是每秒2度,燈轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即,且

1)填空:______;

2)若燈射線先轉(zhuǎn)動(dòng)60秒,燈射線才開始轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?

3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,若射出的光束交于點(diǎn),過于點(diǎn),且,則在轉(zhuǎn)動(dòng)過程中,請(qǐng)?zhí)骄?/span>的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14

1)寫出數(shù)軸上點(diǎn)B表示的數(shù);

2)若點(diǎn)MN分別是線段AO、BO的中點(diǎn),求線段MN的長(zhǎng);

3)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā).以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā).問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好治理西太湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購(gòu)買10 臺(tái)污水處理設(shè)備,現(xiàn)有AB兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:

經(jīng)調(diào)查:購(gòu)買-臺(tái)A型設(shè)備比購(gòu)買一-臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買2臺(tái)A型設(shè)備比購(gòu)買4臺(tái)B型設(shè)備少4萬(wàn)元.

(1)a、b的值;

(2)經(jīng)預(yù)算:市治污公司購(gòu)買污水處理設(shè)備的資金不超過47萬(wàn)元,并且該月要求處理西太湖的污水量不低于1860 噸,則有哪幾種購(gòu)買方案?請(qǐng)指出最省錢的一種購(gòu)買方案,并指出相應(yīng)的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣14+3tan30°﹣ +(2017+π)0+( 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù) 的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出 的x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其中點(diǎn)A在y軸的左側(cè),點(diǎn)C在x軸的下方,且OA=OC=5.

(1)求拋物線對(duì)應(yīng)的函數(shù)解析式;
(2)點(diǎn)P為拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)PB+PC的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)條件下,點(diǎn)E為拋物線的對(duì)稱軸上的動(dòng)點(diǎn),點(diǎn)F為拋物線上的動(dòng)點(diǎn),以點(diǎn)P、E、F為頂點(diǎn)作四邊形PEFM,當(dāng)四邊形PEFM為正方形時(shí),請(qǐng)直接寫出坐標(biāo)為整數(shù)的點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案