【題目】結(jié)合“愛市西,愛生活,會(huì)創(chuàng)新”的主題,某同學(xué)設(shè)計(jì)了一款“地面霓虹探測(cè)燈”,增加美觀的同時(shí)也為行人的夜間行路帶去了方便.他的構(gòu)想如下:在平面內(nèi),如圖1所示,燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈轉(zhuǎn)動(dòng)的速度是每秒2度,燈轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即,且.
(1)填空:______;
(2)若燈射線先轉(zhuǎn)動(dòng)60秒,燈射線才開始轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,若射出的光束交于點(diǎn),過作交于點(diǎn),且,則在轉(zhuǎn)動(dòng)過程中,請(qǐng)?zhí)骄?/span>與的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說明理由.
【答案】(1)120;(2)燈轉(zhuǎn)動(dòng)100秒,兩燈的光束互相平行;(3)在轉(zhuǎn)動(dòng)過程中,和關(guān)系不會(huì)變化,且有,理由見解析.
【解析】
(1)先根據(jù)角的倍差求出的度數(shù),再根據(jù)平行線的性質(zhì)即可得;
(2)設(shè)A燈轉(zhuǎn)動(dòng)時(shí)間為t秒,先求出兩個(gè)臨界位置:燈射線從開始順時(shí)針旋轉(zhuǎn)至、燈射線從開始順時(shí)針旋轉(zhuǎn)至,再分三種情況,分別利用平行線的性質(zhì)列出等式求解即可得;
(3)先根據(jù)角的和差求出,再根據(jù)三角形的內(nèi)角和定理可得,然后根據(jù)角的和差可得,由此即可得.
(1)∵,
∴
(兩直線平行,內(nèi)錯(cuò)角相等)
故答案為:120;
(2)設(shè)A燈轉(zhuǎn)動(dòng)時(shí)間為t秒
燈射線從開始順時(shí)針旋轉(zhuǎn)至所需時(shí)間為(秒),燈射線從開始順時(shí)針旋轉(zhuǎn)至所需時(shí)間為(秒)
燈射線從開始順時(shí)針旋轉(zhuǎn)至所需時(shí)間為(秒)
則t的取值范圍為,即
由題意,分以下三種情況:
①當(dāng)時(shí),如圖1所示
∵
∴
∵
∴
∴
∴
解得
此時(shí),
即兩燈的光束重合,不符題意,舍去
②當(dāng)時(shí),如圖2所示,此時(shí)燈A射線未從AN回轉(zhuǎn)
∵
∴
∵
∴
∴
∴
解得(不符題設(shè),舍去)
③當(dāng)時(shí),如圖2所示,此時(shí)燈A射線旋轉(zhuǎn)至AN,并已開始回轉(zhuǎn)
∵
∴
∵
∴
∴
∴
解得,符合題設(shè)
綜上,燈轉(zhuǎn)動(dòng)100秒,兩燈的光束互相平行;
(3)和關(guān)系不會(huì)變化,且有,理由如下:
設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒
∵
∴
又∵
∴
∴
∴,即
故在轉(zhuǎn)動(dòng)過程中,和關(guān)系不會(huì)變化,且有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn) ,點(diǎn) .對(duì) 點(diǎn)作下列變換:①先 把點(diǎn) 向右平移 個(gè)單位,再向上平移 個(gè)單位;②先把點(diǎn) 向上平移 個(gè)單位,再向右平移 個(gè)單位;③先作點(diǎn) 以 軸為對(duì)稱軸的軸對(duì)稱變換,再向左平移 個(gè)單位;④先作點(diǎn) 以 軸為對(duì)稱軸的軸對(duì)稱變換,再向右平移 個(gè)單位,其中能由點(diǎn) 得到點(diǎn) 的變換 是_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某工程隊(duì)準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測(cè)量山坡的坡度,即tanα的值.測(cè)量員在山坡P處(不計(jì)此人身高)觀察對(duì)面山頂上的一座鐵塔,測(cè)得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓O是Rt△ABC的外接圓,∠ACB=90°,∠A=25°,過點(diǎn)C作圓O的切線,交AB的延長(zhǎng)線于點(diǎn)D,則∠D的度數(shù)是( )
A.25°
B.40°
C.50°
D.65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE、BE,若△ABE是等邊三角形,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC經(jīng)過一定的變換得到△A′B′C′,如果△ABC邊上點(diǎn)P的坐標(biāo)為(a,b),那么這個(gè)點(diǎn)在△A′B′C′中的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為( 。
A. (﹣a,b﹣2) B. (﹣a,b+2) C. (﹣a+2,﹣b) D. (﹣a+2,b+2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=3∠B,AB=10,AC=4,AD平分∠BAC,交BC于點(diǎn)D,CE⊥AD于E,則CE= ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底仰角為60°,沿坡度為1: 的坡面AB向上行走到B處,測(cè)得廣告牌頂部C的仰角為45°,又知AB=10m,AE=15m,求廣告牌CD的高度(精確到0.1m,測(cè)角儀的高度忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校2000名學(xué)生每周去圖書館時(shí)間的情況,隨機(jī)調(diào)查了其中的100名學(xué)生,對(duì)這100名學(xué)生每周去圖書館的時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周去圖書館的時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占20%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查屬于調(diào)查,樣本容量是;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)若從這100名學(xué)生中隨機(jī)抽取1名學(xué)生,求抽取的這個(gè)學(xué)生每周去圖書館的時(shí)間恰好在8﹣10小時(shí)的概率;
(4)估計(jì)全校學(xué)生每周去圖書館的時(shí)間不少于6小時(shí)的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com