【題目】如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).
(1)求該二次函數(shù)的表達(dá)式;
(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數(shù)表達(dá)式;
(3)在(2)的條件下,請解答下列問題:
①在x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
②動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當(dāng)運動時間t為何值時,△DMN的面積最大,并求出這個最大值.
【答案】(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當(dāng)t=時,S△MDN的最大值為.
【解析】
(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結(jié)果;
(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD∥BC,設(shè)直線AD的解析式為y=-x+b,即可得到結(jié)論;
(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要當(dāng)或時,△PBC∽△ABD,解方程組得D(4,5),求得
設(shè)P的坐標(biāo)為(x,0),代入比例式解得或x=4.5,即可得到或P(4.5,0);
②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF 求得求得 由于于是得到 即可得到結(jié)果.
(1)由題意知:
解得
∴二次函數(shù)的表達(dá)式為
(2)在 中,令y=0,則
解得:
∴B(3,0),
由已知條件得直線BC的解析式為y=x+3,
∵AD∥BC,
∴設(shè)直線AD的解析式為y=x+b,
∴0=1+b,
∴b=1,
∴直線AD的解析式為y=x1;
(3)①∵BC∥AD,
∴∠DAB=∠CBA,
∴只要當(dāng):或時,△PBC∽△ABD,
解得D(4,5),
∴
設(shè)P的坐標(biāo)為(x,0),
即或
解得或x=4.5,
∴或P(4.5,0),
②過點B作BF⊥AD于F,過點N作NE⊥AD于E,
在Rt△AFB中,
∴sin∠BAF
∴
∴
∵
又∵
∴
∴當(dāng)時,的最大值為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出四個等式:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C.現(xiàn)選取其中的三個,以兩個作為已知條件,另一個作為結(jié)論.
(1)請你寫出一個正確的命題,并加以證明;
(2)請你至少寫出三個這樣的正確命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.在一次課題設(shè)計活動中,小明對修建一座87m長的水庫大壩提出了以下方案;大壩的橫截面為等腰梯形,如圖,∥,壩高10m,迎水坡面的坡度,老師看后,從力學(xué)的角度對此方案提出了建議,小明決定在原方案的基礎(chǔ)上,將迎水坡面的坡度進行修改,修改后的迎水坡面的坡度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.
(1)求證:AO=EO;
(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應(yīng)降價多少元?請完成下列問題:
(1)未降價之前,某商場襯衫的總盈利為 元.
(2)降價后,設(shè)某商場每件襯衫應(yīng)降價x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進行表示)
(3)請列出方程,求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少?
(銷售利潤=銷售價-成本價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F是DE的中點,H是AE的中點,G是BD的中點.
(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FH和FG的數(shù)量關(guān)系為______和位置關(guān)系為______;
(2)如圖2,若將三角板△DEC繞著點C順時針旋轉(zhuǎn)至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;
(3)如圖3,將圖1中的△DEC繞點C順時針旋轉(zhuǎn)一個銳角,得到圖3,(1)中的猜想還成立嗎?寫出結(jié)論,證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com