【題目】如圖,已知點B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.

(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.

【答案】
(1)證明:在△ABC和△DFE中

∴△ABC≌△DFE(SAS),

∴∠ACE=∠DEF,

∴AC∥DE


(2)解:∵△ABC≌△DFE,

∴BC=EF,

∴CB﹣EC=EF﹣EC,

∴EB=CF,

∵BF=13,EC=5,

∴EB= =4,

∴CB=4+5=9.


【解析】(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進而可得AC∥DE;(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進而可得EB的長,然后可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊含有30°角的直角三角板ABC,在水平桌面上繞點C按順時針方向旋轉(zhuǎn)到A′B′C′的位置,若BC=12cm,則頂點A從開始到結(jié)束所經(jīng)過的路徑長為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC內(nèi)有邊長分別為a,b,c的三個正方形,則a,b,c滿足的關(guān)系式是(
A.b=a+c
B.b=ac
C.b2=a2+c2
D.b=2a=2c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點,且AE與DE分別平分∠BAD和∠ADC

(1)求證:AE⊥DE;
(2)設(shè)以AD為直徑的半圓交AB于F,連結(jié)DF交AE于G,已知CD=5,AE=8.
①求BC的長;
②求 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸上,頂點B的坐標為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.

(1)求過O,B,E三點的二次函數(shù)關(guān)系式;
(2)求直線DE的解析式和點M的坐標;
(3)若反比例函數(shù)y= (x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D、E分別是邊AB,BC的中點.若△DBE的周長是6,則△ABC的周長是(

A.8
B.10
C.12
D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2= (m為常數(shù),且m≠0)的圖象交于點A(﹣2,1)、B(1,n).

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當y1<y2<0時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4.
(1)隨機摸取一個小球,求恰好摸到標號為2的小球的概率;
(2)隨機摸取一個小球然后放回,再隨機摸取一個小球,求兩次摸取的小球的標號的和為5的概率.

查看答案和解析>>

同步練習(xí)冊答案