【題目】若關于x的方程 的解為整數(shù),且不等式組 無解,則所有滿足條件的非負整數(shù)a的和為_____.
【答案】7
【解析】
先把a當常數(shù)解分式方程,x=,再將a當常數(shù)解不等式組,根據(jù)不等式組無解得:a≤5,找出當a為非負整數(shù)時,x也是整數(shù)的值時,確定a的值并相加即可.
解:,
去分母,方程兩邊同時乘以x﹣3,
ax=3+a+x,
x=,且x≠3,
,
由①得:x>5,
由②得:x<a,
∵不等式組 無解,
∴a≤5,
當a=0時,x==﹣3,
當a=1時,x=無意義,
當a=2時,x==5,
當a=3時,x==3分式方程無解,不符合題意,
當a=4時,x==,
當a=5時,x==2,
∵x是整數(shù),a是非負整數(shù),
∴a=0,2,5,
所有滿足條件的非負整數(shù)a的和為7,
故答案為:7
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的對稱軸為,與軸的一個交點在和之間,其部分圖像如圖所示,則下列結論:①點,,是該拋物線上的點,則;②;③(為任意實數(shù)).其中正確結論的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。
(1)如圖1,若△ABC為直角三角形,求的值;
(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;
(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
在復習《反比例函數(shù)》一課時,同桌的小明和小芳有一個間題觀點不一致,小明認為如果兩次分別從l到6六個整數(shù)中任取一個數(shù),第一個數(shù)作為點的橫坐標,第二個數(shù)作為點的縱坐標,則點在反比例函數(shù)的的圖象上的概率一定大于在反比例函數(shù)的圖象上的概率,而小芳卻認為兩者的概率相同.你贊成誰的觀點?
(1)試用列表或畫樹狀圖的方法列舉出所有點的情形;
(2)分別求出點在兩個反比例函數(shù)的圖象上的概率,并說明誰的觀點正確.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】知識背景
當a>0且x>0時,因為(﹣)2≥0,所以x﹣2+≥0,從而x+(當x=時取等號).
設函數(shù)y=x+(a>0,x>0),由上述結論可知:當x=時,該函數(shù)有最小值為2.
應用舉例
已知函數(shù)為y1=x(x>0)與函數(shù)y2=(x>0),則當x==2時,y1+y2=x+有最小值為2=4.
解決問題
(1)已知函數(shù)為y1=x+3(x>﹣3)與函數(shù)y2=(x+3)2+9(x>﹣3),當x取何值時,有最小值?最小值是多少?
(2)已知某設備租賃使用成本包含以下三部分:一是設備的安裝調試費用,共490元;二是設備的租賃使用費用,每天200元;三是設備的折舊費用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設該設備的租賃使用天數(shù)為x天,則當x取何值時,該設備平均每天的租貨使用成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過的三個頂點,其中點,點,軸,點是直線下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點且與軸平行的直線與直線,分別交于點,,當四邊形的面積最大時,求點的坐標;
(3)當點為拋物線的頂點時,在直線上是否存在點,使得以,,為頂點的三角形與相似,若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC是弦,弦BD平分∠ABC交AC于F,弦DE⊥AB于H,交AC于G.
①求證:AG=GD;
②當∠ABC滿足什么條件時,△DFG是等邊三角形?
③若AB=10,sin∠ABD=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為的直徑,,是的兩條弦,過點作,交的延長線與點.
(1)求證:是的切線;
(2)若,求的值;
(3)在(2)的條件下,若,,求與的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com