【題目】

在復(fù)習(xí)《反比例函數(shù)》一課時,同桌的小明和小芳有一個間題觀點不一致,小明認(rèn)為如果兩次分別從l6六個整數(shù)中任取一個數(shù),第一個數(shù)作為點的橫坐標(biāo),第二個數(shù)作為點的縱坐標(biāo),則點在反比例函數(shù)的的圖象上的概率一定大于在反比例函數(shù)的圖象上的概率,而小芳卻認(rèn)為兩者的概率相同.你贊成誰的觀點?

(1)試用列表或畫樹狀圖的方法列舉出所有點的情形;

(2)分別求出點在兩個反比例函數(shù)的圖象上的概率,并說明誰的觀點正確.

【答案】1)見解析;(2)小芳的觀點正確.理由見解析.

【解析】

試題(1)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡單;解題時要注意是放回實驗還是不放回實驗,此題屬于放回實驗;

2)依據(jù)(1)分析求得所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.

試題解析:(1)畫樹狀圖得:

2一共有36種可能的結(jié)果,且每種結(jié)果的出現(xiàn)可能性相同,

點(34),(43),(26),(62)在反比例函數(shù)y=的圖象上,

點(23),(3,2),(1,6),(6,1)在反比例函數(shù)y=的圖象上.

Pm,n)在兩個反比例函數(shù)的圖象上的概率都為:,

小芳的觀點正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點A,過點AABx軸于點B,則SAOB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是△ABC的內(nèi)心,AE的延長線交BC于點F,交△ABC的外接圓⊙O于點D,連接BD,過點D作直線DM,使∠BDM=∠DAC

1)求證:直線DM是⊙O的切線;

2)若DF2,AF5,求BD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,且AB =6,C是⊙O上一點,D是的中點,過點D作⊙O的切線,與AB、AC的延長線分別交于點E、F,連接AD.

(l)求證:AF⊥EF;

(2)填空:

①當(dāng)BE= 時,點C是AF的中點;

②當(dāng)BE= 時,四邊形OBDC是菱形,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=–x2+1的頂點為P,點A是第一象限內(nèi)該二次函數(shù)圖像上一點,過點Ax軸的平行線交二次函數(shù)圖像于點B,分別過點B、Ax軸的垂線,垂足分別為C、D,連接PA、PD,PDAB于點EPADPEA相似嗎?

A. 始終相似B. 始終不相似C. 只有AB=AD時相似D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2bxc的頂點為M,對稱軸是直線x1,與x軸的交點為A(3,0)B.將拋物線yx2bxc繞點B逆時針方向旋轉(zhuǎn)90°,點M1,A1為點M,A旋轉(zhuǎn)后的對應(yīng)點,旋轉(zhuǎn)后的拋物線與y軸相交于C,D兩點.

(1)寫出點B的坐標(biāo)及求原拋物線的解析式:

(2)求證A,M,A1三點在同一直線上:

(3)設(shè)點P是旋轉(zhuǎn)后拋物線上DM1之間的一動點,是否存在一點P,使四邊形PM1MD的面積最大.如果存在,請求出點P的坐標(biāo)及四邊形PM1MD的面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程 的解為整數(shù),且不等式組 無解,則所有滿足條件的非負(fù)整數(shù)a的和為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于三角函數(shù)有如下的公式:

sin(α+β)=sinαcosβ+cosαsinβ①;cos(α+β)=cosαcosβsinαsinβ②;tan(α+β)=

利用這些公式可將某些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,

如:tan105°=tan(45°+60°)====﹣(2+).

根據(jù)上面的知識,你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實際問題:

如圖,直升飛機(jī)在一建筑物CD上方A點處測得建筑物頂端D點的俯角α=60°,底端C點的俯角β=75°,此時直升飛機(jī)與建筑物CD的水平距離BC42m,求建筑物CD的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為3的⊙O經(jīng)過等邊△ABO的頂點A、B,點P為半徑OB上的動點,連接AP,過點PPCAP交⊙O于點C,當(dāng)∠ACP=30°時,AP的長為( 。

A. 3B. 3C. D. 3

查看答案和解析>>

同步練習(xí)冊答案