【題目】
在復(fù)習(xí)《反比例函數(shù)》一課時,同桌的小明和小芳有一個間題觀點不一致,小明認(rèn)為如果兩次分別從l到6六個整數(shù)中任取一個數(shù),第一個數(shù)作為點的橫坐標(biāo),第二個數(shù)作為點的縱坐標(biāo),則點在反比例函數(shù)的的圖象上的概率一定大于在反比例函數(shù)的圖象上的概率,而小芳卻認(rèn)為兩者的概率相同.你贊成誰的觀點?
(1)試用列表或畫樹狀圖的方法列舉出所有點的情形;
(2)分別求出點在兩個反比例函數(shù)的圖象上的概率,并說明誰的觀點正確.
【答案】(1)見解析;(2)小芳的觀點正確.理由見解析.
【解析】
試題(1)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡單;解題時要注意是放回實驗還是不放回實驗,此題屬于放回實驗;
(2)依據(jù)(1)分析求得所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.
試題解析:(1)畫樹狀圖得:
(2)∴一共有36種可能的結(jié)果,且每種結(jié)果的出現(xiàn)可能性相同,
點(3,4),(4,3),(2,6),(6,2)在反比例函數(shù)y=的圖象上,
點(2,3),(3,2),(1,6),(6,1)在反比例函數(shù)y=的圖象上.
∴點P(m,n)在兩個反比例函數(shù)的圖象上的概率都為:,
∴小芳的觀點正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點A,過點A作AB⊥x軸于點B,則S△AOB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是△ABC的內(nèi)心,AE的延長線交BC于點F,交△ABC的外接圓⊙O于點D,連接BD,過點D作直線DM,使∠BDM=∠DAC;
(1)求證:直線DM是⊙O的切線;
(2)若DF=2,AF=5,求BD長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB =6,C是⊙O上一點,D是的中點,過點D作⊙O的切線,與AB、AC的延長線分別交于點E、F,連接AD.
(l)求證:AF⊥EF;
(2)填空:
①當(dāng)BE= 時,點C是AF的中點;
②當(dāng)BE= 時,四邊形OBDC是菱形,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=–x2+1的頂點為P,點A是第一象限內(nèi)該二次函數(shù)圖像上一點,過點A作x軸的平行線交二次函數(shù)圖像于點B,分別過點B、A作x軸的垂線,垂足分別為C、D,連接PA、PD,PD交AB于點E,△PAD與△PEA相似嗎? ( )
A. 始終相似B. 始終不相似C. 只有AB=AD時相似D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c的頂點為M,對稱軸是直線x=1,與x軸的交點為A(-3,0)和B.將拋物線y=x2+bx+c繞點B逆時針方向旋轉(zhuǎn)90°,點M1,A1為點M,A旋轉(zhuǎn)后的對應(yīng)點,旋轉(zhuǎn)后的拋物線與y軸相交于C,D兩點.
(1)寫出點B的坐標(biāo)及求原拋物線的解析式:
(2)求證A,M,A1三點在同一直線上:
(3)設(shè)點P是旋轉(zhuǎn)后拋物線上DM1之間的一動點,是否存在一點P,使四邊形PM1MD的面積最大.如果存在,請求出點P的坐標(biāo)及四邊形PM1MD的面積;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程 的解為整數(shù),且不等式組 無解,則所有滿足條件的非負(fù)整數(shù)a的和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①;cos(α+β)=cosαcosβ﹣sinαsinβ②;tan(α+β)=③
利用這些公式可將某些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,
如:tan105°=tan(45°+60°)====﹣(2+).
根據(jù)上面的知識,你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實際問題:
如圖,直升飛機(jī)在一建筑物CD上方A點處測得建筑物頂端D點的俯角α=60°,底端C點的俯角β=75°,此時直升飛機(jī)與建筑物CD的水平距離BC為42m,求建筑物CD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為3的⊙O經(jīng)過等邊△ABO的頂點A、B,點P為半徑OB上的動點,連接AP,過點P作PC⊥AP交⊙O于點C,當(dāng)∠ACP=30°時,AP的長為( 。
A. 3B. 3或C. D. 3或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com