【題目】如圖,地物線點(diǎn)、、均不為0)的頂點(diǎn)為,與軸的交點(diǎn)為,我們稱以為頂點(diǎn),對(duì)稱軸是軸且過點(diǎn)的拋物線為拋物線的衍生拋物線,直線為拋物線的衍生直線.

1)求拋物線的衍生拋物線和衍生直線的解析式;

2)若一條拋物線的衍生拋物線和衍生直線分別是,求這條拋物線的解析式.

【答案】(1); (2)

【解析】

1)衍生拋物線頂點(diǎn)為原拋物線與y軸的交點(diǎn),則可根據(jù)頂點(diǎn)設(shè)頂點(diǎn)式方程,由衍生拋物線過原拋物線的頂點(diǎn)代入頂點(diǎn)坐標(biāo)可求出衍生拋物線解析式.根據(jù)衍生直線經(jīng)過M、N可求衍生直線的解析式.

2)已知衍生拋物線和衍生直線求原拋物線思路正好與(1)相反,根據(jù)衍生拋物線與衍生直線的兩交點(diǎn)分別為衍生拋物線與原拋物線的交點(diǎn),則可推得原拋物線頂點(diǎn)式,再代入經(jīng)過點(diǎn),即得解析式.

解:(1)∵拋物線點(diǎn)過,

∴設(shè)其衍生拋物線為

∴衍生拋物線過拋物線的頂點(diǎn)

,即

∴衍生拋物線為

設(shè)衍生直線為,則直線點(diǎn)過

解得

∴衍生直線為

2)∵衍生拋物線和衍生直線兩交點(diǎn)分別為原拋物線與衍生拋物線的頂點(diǎn),

∴將聯(lián)立,得

解得

∵衍生拋物線的頂點(diǎn)為,

∴原拋物線的頂點(diǎn)為

設(shè)原拋物線為,則拋物線過點(diǎn),

,即

∴原拋物線為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)CD在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D60°.

(1)求證:AE是⊙O的切線;

(2) 連接OC,當(dāng)BC3時(shí),求劣弧AC的長和扇形B0C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的半徑為,的兩條弦,,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形中,AB=8,BC=6,過對(duì)角線中點(diǎn)的直線分別交,邊于點(diǎn).

(1)求證:四邊形是平行四邊形;

(2)當(dāng)四邊形是菱形時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)用配方法求出該函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸;

2)在如圖所示的平面直角坐標(biāo)系中畫出該函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)和點(diǎn)

(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);

(2)點(diǎn)是拋物線上、之間的一點(diǎn),過點(diǎn)軸于點(diǎn),軸,交拋物線于點(diǎn),過點(diǎn)軸于點(diǎn),當(dāng)矩形的周長最大時(shí),求點(diǎn)的橫坐標(biāo);

(3)如圖2,連接、,點(diǎn)在線段(不與重合),作,交線段于點(diǎn),是否存在這樣點(diǎn),使得為等腰三角形?若存在,求出的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以半圓中的一條弦BC(非直徑)為對(duì)稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若,且AB10,則CB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為5的扇形AOB中,AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)ODBCOEAC,垂足分別為DE

1)當(dāng)BC=6時(shí),求線段OD的長;

2)在DOE中是否存在長度保持不變的邊?如果存在,請(qǐng)指出并求其長度;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,張老師出示了一個(gè)題目:如圖,ABCD的對(duì)角線相交于點(diǎn)O,過點(diǎn)OEF垂直于BDAB,CD分別于點(diǎn)F,E,連接DF,請(qǐng)根據(jù)上述條件,寫出一個(gè)正確結(jié)論其中四位同學(xué)寫出的結(jié)論如下:

小青:;小何:四邊形DFBE是正方形;

小夏:;小雨:

這四位同學(xué)寫出的結(jié)論中不正確的是  

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

同步練習(xí)冊(cè)答案