在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(0,1),C(2,
9
5
).
(Ⅰ)直線l:y=kx+b過(guò)A、B兩點(diǎn),求k、b的值;
(Ⅱ)求過(guò)A、B、C三點(diǎn)的拋物線Q的解析式;
(Ⅲ)設(shè)(Ⅱ)中的拋物線Q的對(duì)稱軸與x軸相交于點(diǎn)E,那么在對(duì)稱軸上是否存在點(diǎn)F,使⊙F與直線l和x軸同時(shí)相切?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ)∵直線y=kx+b過(guò)A、B兩點(diǎn),
-k+b=0
b=1
(1分)
解這個(gè)方程組,
得k=1,b=1.(2分)

(Ⅱ)設(shè)拋物線的解析式為y=ax2+bx+c,
則有:
a-b+c=0
c=1
4a+2b+c=
9
5
(3分)
解這個(gè)方程組,
a=-
1
5
b=
4
5
c=1

∴拋物線的解析式為y=-
1
5
x2+
4
5
x+1.(4分)

(Ⅲ)存在⊙F與直線l和x軸同時(shí)相切.
易知拋物線Q的對(duì)稱軸為x=2,(5分)
①當(dāng)圓心F在x軸的上方時(shí),
設(shè)點(diǎn)F的坐標(biāo)為(2,y0),把x=2代入y=x+1,
得y=3.
∴拋物線Q的對(duì)稱軸與直線l的交點(diǎn)為M(2,3).(6分)
∴EF=y0,ME=3,MF=ME-EF=3-y0.(7分)
由直線l:y=x+1知,
∠NMF=45度.
∴△MNF是等腰直角三角形
∴MF=
2
NF=
2
EF
∴3-y0=
2
y0
∴y0=3
2
-3
∴點(diǎn)F的坐標(biāo)為(2,3
2
-3).(8分)
②當(dāng)圓心F在x軸的下方時(shí),設(shè)點(diǎn)F的坐標(biāo)為(2,y0),則MF=3-y0,F(xiàn)E=-y0
由△MNF為等腰直角三角形,得3-y0=
2
y0,(9分)
∴y0=-3-3
2

∴點(diǎn)F的坐標(biāo)為(2,-3-3
2
).(10分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,-3)三點(diǎn),對(duì)稱軸與拋物線相交于點(diǎn)D、與直線BC相交于點(diǎn)E,連接DE.
(1)求該拋物線的解析式;
(2)平面直角坐標(biāo)系中是否存在一點(diǎn)R,使點(diǎn)R、D、B所成三角形和△DEB全等?若存在,求點(diǎn)R的坐標(biāo);若不存在,說(shuō)明理由;
(3)在拋物線上是否存在一點(diǎn)P,使△PEB的面積是△BDE的面積的一半?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三角形ABC是以BC為底邊的等腰三角形,點(diǎn)A、C分別是一次函數(shù)y=-
3
4
x+3的圖象與y軸、x軸的交點(diǎn),點(diǎn)B在二次函數(shù)y=
1
8
x2+bx+c
的圖象上,且該二次函數(shù)圖象上存在一點(diǎn)D使四邊形ABCD能構(gòu)成平行四邊形.
(1)試求b,c的值,并寫出該二次函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)P從A到D,同時(shí)動(dòng)點(diǎn)Q從C到A都以每秒1個(gè)單位的速度運(yùn)動(dòng),問(wèn):
①當(dāng)P運(yùn)動(dòng)到何處時(shí),有PQ⊥AC?
②當(dāng)P運(yùn)動(dòng)到何處時(shí),四邊形PDCQ的面積最小?此時(shí)四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰為2200元?根據(jù)以上結(jié)論,請(qǐng)你直接寫出售價(jià)在什么范圍時(shí),每個(gè)月的利潤(rùn)不低于2200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)學(xué)課上,老師提出:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(1,0),點(diǎn)B在x軸上,且在點(diǎn)A的右側(cè),AB=OA,過(guò)點(diǎn)A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點(diǎn)C和D,直線OC交BD于點(diǎn)M,直線CD交y軸于點(diǎn)H,記點(diǎn)C、D的橫坐標(biāo)分別為xC、xD,點(diǎn)H的縱坐標(biāo)為yH
同學(xué)發(fā)現(xiàn)兩個(gè)結(jié)論:
①S△CMD:S梯形ABMC=2:3 ②數(shù)值相等關(guān)系:xC•xD=-yH
(1)請(qǐng)你驗(yàn)證結(jié)論①和結(jié)論②成立;
(2)請(qǐng)你研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請(qǐng)說(shuō)明理由);
(3)進(jìn)一步研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關(guān)系?(寫出結(jié)果并說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點(diǎn),AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸的E點(diǎn)上,則C和D點(diǎn)依次落在第二象限的F點(diǎn)上和x軸的G點(diǎn)上(如圖).
(1)求經(jīng)過(guò)B,E,G三點(diǎn)的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點(diǎn)H,試求四邊形EGBH的周長(zhǎng).
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點(diǎn),BPEG,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司生產(chǎn)某種產(chǎn)品,每件產(chǎn)品成本是3元,售價(jià)是4元,年銷售量為10萬(wàn)件.為了獲得更好的效益,公司準(zhǔn)備那出一定的資金做廣告.根據(jù)經(jīng)驗(yàn),每年投入廣告費(fèi)為x(萬(wàn)元)時(shí),產(chǎn)品的年銷售量將是原銷售量的y倍,且y=-
x2
10
+
7
10
x+
7
10
.如果把利潤(rùn)看作是銷售額減去成本費(fèi)和廣告費(fèi),試求當(dāng)年利潤(rùn)為16萬(wàn)元時(shí),廣告費(fèi)x為多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,直線l經(jīng)過(guò)點(diǎn)M(3,0),且平行于y軸,與拋物線y=ax2交于點(diǎn)N,若S△OMN=9,則a的值是( 。
A.
2
3
B.-
2
3
C.
1
3
D.-
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

科學(xué)研究表明,合理安排各學(xué)科的課外學(xué)習(xí)時(shí)間,可以有效的提高學(xué)習(xí)的效率.教育專家們通過(guò)對(duì)九年級(jí)學(xué)生的課外學(xué)習(xí)時(shí)間與學(xué)習(xí)收益情況進(jìn)行進(jìn)一步的研究發(fā)現(xiàn),九年級(jí)學(xué)生每天課外用于非數(shù)學(xué)學(xué)科的學(xué)習(xí)時(shí)間t(小時(shí))與學(xué)習(xí)收益量y1的函數(shù)關(guān)系是圖①中的一條折線;每天用于數(shù)學(xué)學(xué)科的學(xué)習(xí)時(shí)間t(小時(shí))與學(xué)習(xí)收益量y2的函數(shù)關(guān)系如圖②所示:圖象中OA是頂點(diǎn)為A的拋物線的一部分,AB是射線.

(1)求出y1與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式,并注明自變量t的取值范圍;
(2)求出y2與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式,并注明自變量t的取值范圍;
(3)如果九年級(jí)學(xué)生每天課外學(xué)習(xí)的時(shí)間為2小時(shí),學(xué)習(xí)的總收益量為W(W=y1+y2),請(qǐng)問(wèn)應(yīng)如何安排學(xué)習(xí)時(shí)間才能使學(xué)習(xí)的總收益量最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案