精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtABC中,ACB90°,A22.5°,斜邊AB的垂直平分線交AC于點D,點FAC上,點EBC的延長線上,CECF,連接BF,DE.線段DEBF在數量和位置上有什么關系?并說明理由.

【答案】DEBFDEBF.理由見解析.

【解析】試題分析:本題首先要給出答案,在說明理由. 連接DB,根據DH是AB的垂直平分線得出∠A=∠DBH,再根據三角形外角的性質得出∠CDB=∠A+∠DBH,故可得出CD=CB.由SAS定理得出△ECD≌△FCB,所以ED=FB,∠DEC=∠BFC,∠DEC+∠FBC=90°,進而可得出結論.

試題解析:

DEBF,DEBF.

理由如下:

連接BD,延長BFDE于點G.

D在線段AB的垂直平分線上,ADBD,

∴∠ABDA22.5°.

RtABC中,∵∠ACB90°,A22.5°

∴∠ABC67.5°,

∴∠CBDABCABD45°

∴△BCD為等腰直角三角形,

BCDC.

CECF,RtECDRtFCB(SAS),

DEBF,CEDCFB.

∵∠CFBCBF90°,∴∠CEDCBF90°,

∴∠EGB90°,即DEBF.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DE是過點A的直線,BDDE于D,CEDE于點E;

(1)若B、C在DE的同側(如圖所示)且AD=CE.求證:ABAC;

(2)若B、C在DE的兩側(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,一次函數y=﹣x+b(b為常數,b>0)的圖象與x軸、y軸分別交于A、B兩點,半徑為5的圓⊙O與x軸正半軸相交于點C,與y軸相交于D、E兩點.

(1)若直線AB交劣弧 于P、Q兩點(異于C、D)
①當P點坐標為(3,4)時,求b值;
②求∠CPE的度數,并用含b的代數式表示弦PQ的長(寫出b的取值范圍);
(2)當b=6時,線段AB上存在幾個點F,使∠CFE=45°?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A(0,4),B(2,0).

(1)求直線AB的函數解析式;
(2)已知點M是線段AB上一動點(不與點A、B重合),以M為頂點的拋物線y=(x﹣m)2+n與線段OA交于點C.
①求線段AC的長;(用含m的式子表示)
②是否存在某一時刻,使得△ACM與△AMO相似?若存在,求出此時m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各題

(1)

(2)(2x)2x4÷x

(3)

(4)

(5)(x﹣2)(2+x)﹣(2﹣x)(x﹣2)

(6)(6x4y2+8x3y4)÷2xy2﹣(﹣2xy)2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知CDAB的中垂線,垂足為D,DEAC于點E,DFBC于點F.

(1)求證:DE=DF;

(2)若線段CE的長為3 cm,BC的長為4 cm,BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】西瓜和甜瓜是新疆特色水果,小明的媽媽先購買了2千克西瓜和3千克甜瓜,共花費9元;后又購買了1千克西瓜和2千克甜瓜,共花費5.5元.(每次兩種水果的售價都不變)
(1)求兩種水果的售價分別是每千克多少元?
(2)如果還需購買兩種水果共12千克,要求甜瓜的數量不少于西瓜數量的兩倍,請設計一種購買方案,使所需總費用最低.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,攔水壩的橫斷面為梯形ABCD,AB∥CD,壩頂寬DC為6米,壩高DG為2米,迎水坡BC的坡角為30°,壩底寬AB為(8+2 )米.
(1)求背水坡AD的坡度;
(2)為了加固攔水壩,需將水壩加高2米,并且保持壩頂寬度不變,迎水坡和背水坡的坡度也不變,求加高后壩底HB的寬度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在“書香包河”讀書活動中,學校準備購買一批課外讀物,為使課外讀物滿足學生們的需求,學校就“我最喜愛的課外讀物”從文學、藝術、科普和其他四個類別進行了抽樣調查(每位同學只選一類),如圖是根據調查結果繪制的兩幅不完整的統(tǒng)計圖.請你根據統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調查中,一共調查了______________名同學;

(2)條形統(tǒng)計圖中,m=_________,n=__________;

(3)扇形統(tǒng)計圖中,藝術類讀物所在扇形的圓心角是多少度?

查看答案和解析>>

同步練習冊答案