【題目】在“愛滿揚州”慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成統(tǒng)計圖.
(1)這50名同學捐款的眾數(shù)為元,中位數(shù)為元;
(2)求這50名同學捐款的平均數(shù);
(3)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù).
【答案】
(1)15,15
(2)解:50名同學捐款的平均數(shù)=(5×8+10×14+15×20+20×6+25×2)÷50=13(元);
(3)解:估計這個中學的捐款總數(shù)=600×13=7800(元).
【解析】解:(1)數(shù)據(jù)15元出現(xiàn)了20次,出現(xiàn)次數(shù)最多,所以眾數(shù)是15元;
數(shù)據(jù)總數(shù)為50,所以中位數(shù)是第25、26位數(shù)的平均數(shù),即(15+15)÷2=15(元).
故答案為15,15;
(1)一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)就是眾數(shù);這組數(shù)據(jù)從小到大的順序排列后,處于中間位置的數(shù)是中位數(shù),這組數(shù)據(jù)有偶數(shù)個,故中位數(shù)就是最中間兩個位置的數(shù)的平均數(shù);
(2)50名同學捐款的平均數(shù)=50名同學捐款的總數(shù) 50即可;
(3)估計這個中學的捐款總數(shù)=該校的學生人數(shù) 樣本平均數(shù)13即可。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點B、E、C、F在同一條直線上,BE=CF,∠B=∠DEF,請你添加一個合適的條件,使△ABC≌△DEF,其中不正確條件是( )
A. AB=DEB. AC=DFC. ∠A=∠DD. ∠ACB=∠F
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是;
(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表),求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知△ABC,BF平分外角∠CBP,CF平分外角∠BCQ.試確定∠A和∠F的數(shù)量關系;
(2)如圖2,已知△ABC,BF和BD三等分外角∠CBP,CF和CE三等分外角∠BCQ.試確定∠A和∠F的數(shù)量關系;
(3)如圖3,已知△ABC,BF、BD和BM四等分外角∠CBP,CF、CE和CN四等分外角∠BCQ.試確定∠A和∠F的數(shù)量關系;
(4)如圖4,已知△ABC,將外角∠CBP進行n等分,BF是臨近BC邊的等分線,將外角∠BCQ進行n等分,CF是臨近BC邊的等分線,試確定∠A和∠F的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(知識生成)我們知道,用兩種不同的方法計算同一個幾何圖形的面積,可以得到一些代數(shù)恒等式.
例如:如圖可以得到(a+b)2=a2+2ab+b2,基于此,請解答下列問題:
⑴ 根據(jù)如圖,寫出一個代數(shù)恒等式:
;
⑵ 利用⑴中得到的結論,解決下面的問題:若a+b+c=12,,
則 ;
⑶ 小明同學用如圖中x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個面積為(2a+b)(a+3b)的長方形,則x+y+z= ;
(知識遷移)⑷ 類似地,用兩種不同的方法計算幾何體的體積同樣可以得到一些代數(shù)恒等式.如圖表示的是一個邊長為x的正方體挖去一個邊長為2的小長方體后重新拼成一個新長方體.請你根據(jù)如圖中兩個圖形的變化關系,寫出一個代數(shù)恒等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com