【題目】如圖,三個頂點(diǎn)的坐標(biāo)分別為,,.
(1)請畫出關(guān)于軸成軸對稱的圖形,并寫出、、的坐標(biāo);
(2)求的面積;
(3〉在軸上找一點(diǎn),使的值最小,請畫出點(diǎn)的位置.
【答案】(1)圖見解析;的坐標(biāo)為、的坐標(biāo)為、的坐標(biāo)為;(2);(3)見解析.
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于y軸的對稱的點(diǎn)A1、B1、C1的位置,然后順次連接即可;
(2)依據(jù)割補(bǔ)法即可得到△ABC的面積.
(3)找出點(diǎn)B關(guān)于y軸的對稱點(diǎn)B′,連接B′A與x軸相交于一點(diǎn),根據(jù)軸對稱確定最短路線問題,交點(diǎn)即為所求的點(diǎn)P的位置.
解:(1)△A1B1C1如圖所示,,,;
(2)
(3)如圖所示,作點(diǎn)B關(guān)于y軸的對稱點(diǎn)B',連接B'A,交y軸于點(diǎn)P,則PA+PB最。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點(diǎn)E是邊CD上的動點(diǎn)(點(diǎn)E不與端點(diǎn)C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點(diǎn)F,H,G.當(dāng)=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a,b,c表示交叉的三條公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到這三條公路的距離相等,則可供選擇的站址最多有
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=4,D是BC的中點(diǎn),將△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,連接DE交AC于點(diǎn)F,則△AEF的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知PA、PB是⊙O的切線,A、B為切點(diǎn),連接AO并延長,交PB的延長線于點(diǎn)C,連接PO,交⊙O于點(diǎn)D.
(1)如圖①,若∠AOP=65°,求∠C的大;
(2)如圖②,連接BD,若BD∥AC,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,在的外部作等邊三角形,為的中點(diǎn),連接并延長交于點(diǎn),連接.
(1)如圖1,若,求的度數(shù);
(2)如圖2,的平分線交于點(diǎn),交于點(diǎn),連接.
①補(bǔ)全圖2;
②若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F是ABCD的邊AD上的三等分點(diǎn),BF交AC于點(diǎn)E,如果△AEF的面積為2,那么四邊形CDFE的面積等于( )
A. 18 B. 22 C. 24 D. 46
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)直接寫出拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo);
(2)若拋物線與軸的兩個交點(diǎn)為、,與軸的一個交點(diǎn)為,畫草圖,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長是關(guān)于x的方程x2-mx+-=0的兩個實(shí)數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么□ABCD的周長是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com