【題目】在等腰中,,為邊上的高,點(diǎn)在的外部且,,連接交直線于點(diǎn),連接.
(1)如圖①,當(dāng)時,求證:;
(2)如圖②,當(dāng)時,求的度數(shù);
(3)如圖③,當(dāng)時,求證:.
【答案】(1)見解析;(2);(3)見解析
【解析】
(1)根據(jù)等腰三角形三線合一的性質(zhì),可得AE垂直平分BC,F為垂直平分線AE上點(diǎn),即可得出結(jié)論;
(2)根據(jù)(1)的結(jié)論可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出
,根據(jù)外角性質(zhì)可得計算即可;
(3)在CF上截取CM=DF,連接AM,證明△ACM≌△ADF(SAS),進(jìn)而證得△AFM為等邊三角形即可.
(1)證明:∵AE為等腰△ABC底邊BC上的高線,AB=AC,
,∠AEB=∠AEC=90°,BE=CE,
∴AE垂直平分BE,F在AE上,
;
(2) ,
,
,
,
由(1)知,AE平分∠BAC,
,
,
故答案為:60°;
(3) 在CF上截取CM=DF,連接AM,
由(1)可知,∠ABC=∠ACB,∠ABE=∠ACE,
,
,
,
,
在△ACM和△ADF中,
∴△ACM≌△ADF(SAS),
,
,
∴△AFM為等邊三角形,
,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣,為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫大賽”為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中若干名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
成績分 | 頻數(shù)人 | 頻率 |
10 | ||
| 30 | |
| 40 | n |
| m | |
| 50 | |
a | 1 |
請根據(jù)所給信息,解答下列問題:
______,______,______;
補(bǔ)全頻數(shù)直方圖;
這若干名學(xué)生成績的中位數(shù)會落在______分?jǐn)?shù)段;
若成績在90分以上包括90分的為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時間后他到達(dá)點(diǎn)E,此時他仰望兩棵大樹的頂點(diǎn)A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是真命題的是( )
A. 有兩邊和其中一邊的對角對應(yīng)相等的兩個三角形全等
B. 兩條平行直線被第三條直線所截,則一組同旁內(nèi)角的平分線互相垂直
C. 三角形的一個外角等于兩個內(nèi)角的和
D. 等邊三角形既是中心對稱圖形,又是軸對稱圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某農(nóng)戶發(fā)展養(yǎng)禽業(yè),準(zhǔn)備利用現(xiàn)有的34米長的籬笆靠墻AB(墻長為25米)圍成一個面積為120平方米的長方形養(yǎng)雞場,這個養(yǎng)雞場的長和寬各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長為m的正方形面積為12,則下列關(guān)于m的說法中:①m2是有理數(shù);②m的值滿足m2﹣12=0;③m滿足不等式組;④m是12的算術(shù)平方根. 正確有幾個( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在直線l上(F,C之間不能直接測量),點(diǎn)A,D在l異側(cè),測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四點(diǎn)A、B、C、D.
(1)用圓規(guī)和無刻度的直尺按下列要求與步驟畫出圖形:
①畫直線AB.
②畫射線DC.
③延長線段DA至點(diǎn)E,使.(保留作圖痕跡)
④畫一點(diǎn)P,使點(diǎn)P既在直線AB上,又在線段CE上.
(2)在(1)中所畫圖形中,若cm,cm,點(diǎn)F為線段DE的中點(diǎn),求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形EFGH的頂點(diǎn)在邊長為2的正方形的邊上.若設(shè)AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com