【題目】如圖所示的拋物線對稱軸是直線x=1,與x軸有兩個交點,與y軸交點坐標(biāo)是(03),把它向下平移2個單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個結(jié)論:

b2﹣4ac0abc0,4a+2b+c=1a﹣b+c0中,判斷正確的有(

A. ②③④ B. ①②③ C. ②③ D. ①④

【答案】A

【解析】

根據(jù)題意平移后的拋物線的對稱軸x==1,c=32=1

由圖象可知,平移后的拋物線與x軸有兩個交點,

b2﹣4ac0,故①錯誤;

∵拋物線開口向上,

a0,

b0

abc0,故②正確;

∵平移后拋物線與y軸的交點為(0,1),對稱軸x=1

∴點(2,1是點(01)的對稱點,

∴當(dāng)x=2時,y=1,

4a+2b+c=1,故③正確;

由圖象可知,當(dāng)x=1時,y0,

ab+c0,故④正確.

正確的有②③④.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

【答案】

【解析】試題解析:∵二次函數(shù)有最小值﹣2,

y=

解得:m=.

型】填空
結(jié)束】
19

【題目】如圖,已知ABC三個頂點的坐標(biāo)分別是A(-2,3),B(-3,-1),C(-1,1)

(1)畫出ABC繞點O逆時針旋轉(zhuǎn)90°后的A1B1C1,并寫出點A1的坐標(biāo);

(2)畫出ABC繞點O逆時針旋轉(zhuǎn)180°后的A2B2C2,并寫出點A2的坐標(biāo);

(3)直接回答:AOB與A2OB2有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD及四邊形外一直線l,四個頂點A、B、C、D到直線l的距離分別為a、b、c、d.

(1)觀察圖形,猜想得出a、b、c、d滿足怎樣的關(guān)系式?證明你的結(jié)論.

(2)現(xiàn)將l向上平移,你得到的結(jié)論還一定成立嗎?請分情況寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,B=60°CD是⊙O的直徑,點PCD延長線上的一點,且AP=AC

1)求證:PA是⊙O的切線;

2)求證:AC2=COCP;

3)若PD=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點、在直線上,點在線段上,交于點,.求證:.(完成以下填空)

證明:∵(已知),

(等量代換)

又∵(已知)

(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,PCD邊上一點,且AP、BP分別平分∠DAB、∠CBA,若AD=5,AP=6,則△APB的面積是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某超市利用一個帶斜坡的平臺裝卸貨物,其縱斷面ACFE如圖所示. AE為臺面,AC垂直于地面,AB表示平臺前方的斜坡.斜坡的坡角∠ABC45°,坡長AB2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點D在直線BC上),坡角∠ADC31°.求斜坡AD底端D與平臺AC的距離CD.(結(jié)果精確到0.01m[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,CD⊥AB,垂足為D.下列條件中,能證明△ABC是直角三角形的有   (多選、錯選不得分).

①∠A+∠B=90°

②AB2=AC2+BC2

④CD2=ADBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+2bx+c(b、c為常數(shù)).

(Ⅰ)當(dāng)b=1,c=﹣3時,求二次函數(shù)在﹣2≤x≤2上的最小值;

(Ⅱ)當(dāng)c=3時,求二次函數(shù)在0≤x≤4上的最小值;

(Ⅲ)當(dāng)c=4b2時,若在自變量x的值滿足2b≤x≤2b+3的情況下,與其對應(yīng)的函數(shù)值y的最小值為21,求此時二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案