【題目】某市新建了圓形文化廣場,小杰和小浩準(zhǔn)備不同的方法測量該廣場的半徑.
(1)小杰先找圓心,再量半徑,請你在圖1中,用尺規(guī)作圖的方法幫小杰找到該廣場的圓心(不寫作法,保留作圖痕跡);
(2)小浩在廣場邊(如圖2)選取、、三根石柱,量得、之間的距離與、之間的距離相等,并測得長為240米,到的距離為5米.請你幫他求出廣場的半徑;
(3)請你解決下面的問題:如圖3,的直徑為,弦,是弦上的一個(gè)動(dòng)點(diǎn),求出的長度范圍是多少?
【答案】(1)詳見解析;(2)廣場的半徑1443米;(3).
【解析】
(1)作出弦的垂直平分線,再結(jié)合垂徑定理推論得出圓心位置;
(2)設(shè)圓心為O,連結(jié) OA、OB,OA交BC于D,根據(jù)A、B之間的距離與A、C之間的距離相等,得出,從而得出BD=DC=BC,再根據(jù)勾股定理得出OB2=OD2+BD2,設(shè)OB=x,即可求出廣場的半徑;
(3)過點(diǎn)O作OE⊥AB于點(diǎn)E,連接OB,由垂徑定理可知AE=BE=AB,再根據(jù)勾股定理求出OE的長,由此可得出結(jié)論.
解:如圖1所示,在圓中作任意2條弦的垂直平分線,由垂徑定理可知這2條垂直平分線必定與圓的2條直徑重合,所以交點(diǎn)即為所求;
(2)如圖2,連結(jié)、,交于,
∵,
∴,
∴,
∴(米),
由題意,
在中,,
設(shè),則,
解得:,
,
∴廣場的半徑1443米.
(3)如圖3,過點(diǎn)作于點(diǎn),連接,
∵,
∴,
∵的直徑為,
∴,
∴,
∵垂線段最短,半徑最長,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】表中所列 的7對(duì)值是二次函數(shù) 圖象上的點(diǎn)所對(duì)應(yīng)的坐標(biāo),其中
x | … | … | |||||||
y | … | 7 | m | 14 | k | 14 | m | 7 | … |
根據(jù)表中提供的信息,有以下4 個(gè)判斷:
① ;② ;③ 當(dāng)時(shí),y 的值是 k;④ 其中判斷正確的是 ( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過點(diǎn)(﹣1,4),且與直線相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).
(1)求二次函數(shù)的表達(dá)式;
(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;
(3)在(2)的條件下,點(diǎn)N在何位置時(shí),BM與NC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿AC以1cm/s的速度向點(diǎn)C移動(dòng),同時(shí)點(diǎn)Q從C點(diǎn)出發(fā)沿CB以2cm/s的速度向點(diǎn)B移動(dòng).當(dāng)Q運(yùn)動(dòng)到B點(diǎn)時(shí),P,Q停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)t為何值時(shí),△PCQ的面積等于5cm2?
(2)點(diǎn)P、Q在移動(dòng)過程中,是否存在某一時(shí)刻,使得△PCQ的面積等于△ABC的面積的一半?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)口袋里裝著白、紅、黑三種顏色的小球(除顏色外形狀大小完全相同),其中白球3個(gè)、紅球2個(gè)、黑球1個(gè).
(1)隨機(jī)從袋中取出一個(gè)球,求取出的球是黑球的概率;
(2)若取出的第一只球是紅球,不將它放回袋里,從袋中余下的球中再隨機(jī)地取出1個(gè),這時(shí)取出的球是黑球的概率是多少?
(3)若取出一個(gè)球,將它放回袋中,從袋中再隨機(jī)地取出一個(gè)球,兩次取出的球都是白球的概率是多少?(用列表法或樹狀圖計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn)(在的左側(cè)),與軸交于點(diǎn), 點(diǎn)與點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo):
(2)點(diǎn)是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)的周長最小時(shí),求出點(diǎn)的坐標(biāo);
(3)點(diǎn)在軸上,且,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,在DC的延長線上取一點(diǎn)E,連接OE交BC于點(diǎn)F.已知AB=4,BC=6,CE=2,則CF的長等于( )
A. 1 B. 1.5 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=AC,點(diǎn)E、F分別為邊AB、BC上的點(diǎn),且AE=BF,連接CE、AF交于點(diǎn)H,則下列結(jié)論:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AEAD=AHAF;其中結(jié)論正確的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com