精英家教網 > 初中數學 > 題目詳情

【題目】表中所列 的7對值是二次函數 圖象上的點所對應的坐標,其中

x

y

7

m

14

k

14

m

7

根據表中提供的信息,有以下4 個判斷:

;② ;③ 當時,y 的值是 k;④ 其中判斷正確的是 ( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

【答案】B

【解析】

根據表格得到二次函數的性質,分別求出開口方向,對稱軸、最值即可解題.

解:由表格中的數據可知,當時,y的值先變大后減小,說明二次函數開口向下,所以正確;同時可以確定對稱軸在之間,所以在對稱軸左側可得② 正確因為不知道橫坐標之間的取值規(guī)律,所以無法說明對稱軸是直線x=,所以此時頂點的函數值不一定等于k,所以③ 當時,y 的值是 k錯誤;由題可知函數有最大值,此時,化簡整理得:④ 正確,

綜上正確的有①②④,

故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于點D,延長AO交⊙O于點E,連接CD、CE,若CE是⊙O的切線.

(1)求證:CD是⊙O的切線;

(2)若⊙O的半徑為4,OC=7,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A是反比例函數y= (x>0)的圖象上一點,OA與反比例函數y= (x>0)的圖象交于點C,點By軸的正半軸上,且AB=OA,若ABC的面積為6,則k的值為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數ykx+b與反比例函數y的圖象交于A(14),B(4n)兩點.

(1)求反比例函數和一次函數的解析式;

(2)直接寫出當x0時,kx+b的解集.

(3)Px軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字1,2,3.

(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為________;

(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數字,求這兩個數字之和是3的倍數的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(3分)如圖,在菱形ABCD中,B=60°,AB=1,延長AD到點E,使DE=AD,延長CD到點F,使DF=CD,連接AC、CE、EF、AF,則下列描述正確的是(

A四邊形ACEF是平行四邊形,它的周長是4

B四邊形ACEF是矩形,它的周長是

C四邊形ACEF是平行四邊形,它的周長是

D四邊形ACEF是矩形,它的周長是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2x﹣(m﹣2)=0有實數根.

(1)求m的取值范圍;

(2)若方程有一個根為x=1,求m的值及另一個根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2﹣ax+1=0有兩個相等的實數根,且該實數根也是關于x的方程的根,則ba的值為( 。

A. B. C. 9 D. ﹣9

查看答案和解析>>

同步練習冊答案