【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長,交AD于E,交BA的延長線于點(diǎn)F.

(1)圖中△APD與哪個(gè)三角形全等:_____

(2)猜想:線段PC、PE、PF之間存在什么關(guān)系:_____

【答案】(1)△APD≌△CPDSAS);(2) PC2PEPF

【解析】

1)根據(jù)菱形的性質(zhì)得∠ADP=CDP,DA=DC,從而得到APDCPD全等.
2)根據(jù)菱形的對(duì)邊互相平行得∠DCF=F,再根據(jù)(1)題的結(jié)論得到∠DCP=DAP,從而證得PAE∽△PFA,然后利用比例線段證得等積式即可.

1)∵四邊形ABCD為菱形,
∴∠ADP=CDP,DC=DA
APDCPD中,
,
∴△APD≌△CPDSAS);

2)∵四邊形ABCD為菱形,
∴∠DCF=F,
∵△APD≌△CPD
∴∠DCP=DAP,
∴∠F=PAE
∠APE=∠FPA

∴△PAE∽△PFA,
,
即:PA2=PEPF
P是菱形ABCD的對(duì)角線BD上一點(diǎn),
PA=PC,
PC2=PEPF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點(diǎn)C作CE⊥BC交對(duì)角線BD于點(diǎn)E,且DE=CE,若,則DE=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB O 的直徑,C O 上一點(diǎn),ADCE 于點(diǎn) D,AC 平分DAB

1 求證:直線 CE O 的切線;

2 AB10,CD4,求 BC 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC2,點(diǎn)PBC上.若點(diǎn)PBC的中點(diǎn),則mAP2+BPPC的值為多少?若BC邊上有100個(gè)不同的點(diǎn)P1,P2,P100,且miAPi2+BPiPiCi1,2,,100),則mm1+m2+…+m100 的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長度至點(diǎn)F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為

(1)求k的值;

(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;

(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC,CACB6cmAB8cm,點(diǎn)OABC內(nèi)一點(diǎn)(點(diǎn)O不在ABC邊界上).請(qǐng)你運(yùn)用圖形旋轉(zhuǎn)和兩點(diǎn)之間線段最短等數(shù)學(xué)知識(shí)、方法,求出OA+OB+OC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人在玩轉(zhuǎn)盤游戲時(shí),把轉(zhuǎn)盤A、B分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定:轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤停止后,指針必須指到某一數(shù)字,否則重轉(zhuǎn).

1)請(qǐng)用樹狀圖或列表法列出所有可能的結(jié)果;

2)若指針?biāo)傅膬蓚(gè)數(shù)字都是方程x2-5x+6=0的解時(shí),則甲獲勝;若指針?biāo)傅膬蓚(gè)數(shù)字都不是方程x2-5x+6=0的解時(shí),則乙獲勝,問他們兩人誰獲勝的概率大?請(qǐng)分析說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),在方格紙中如何通過平移或旋轉(zhuǎn)這兩種變換,由圖形得到圖形,再由圖形得到圖形

2)如圖(1),如果點(diǎn)、點(diǎn)的坐標(biāo)分別為,,寫出點(diǎn)的坐標(biāo);

3)如圖(2)所示是某設(shè)計(jì)師設(shè)計(jì)的圖案的一部分,請(qǐng)你運(yùn)用旋轉(zhuǎn)變換的方法,在方格紙中將圖形繞點(diǎn)順時(shí)針依次旋轉(zhuǎn)、,依次畫出旋轉(zhuǎn)后得到的圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案